Spaces:
Runtime error
Runtime error
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
# Apply torchvision compatibility fix before other imports | |
import sys | |
sys.path.insert(0, "./hy3dshape") | |
sys.path.insert(0, "./hy3dpaint") | |
pythonpath = sys.executable | |
print(pythonpath) | |
try: | |
from torchvision_fix import apply_fix | |
apply_fix() | |
except ImportError: | |
print( | |
"Warning: torchvision_fix module not found, proceeding without compatibility fix" | |
) | |
except Exception as e: | |
print(f"Warning: Failed to apply torchvision fix: {e}") | |
import os | |
import random | |
import shutil | |
import subprocess | |
import time | |
from glob import glob | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import trimesh | |
import uvicorn | |
from fastapi import FastAPI | |
from fastapi.staticfiles import StaticFiles | |
import uuid | |
import numpy as np | |
from hy3dshape.utils import logger | |
from hy3dpaint.convert_utils import create_glb_with_pbr_materials | |
MAX_SEED = 1e7 | |
ENV = "Local" # "Huggingface" | |
if ENV == "Huggingface": | |
""" | |
Setup environment for running on Huggingface platform. | |
This block performs the following: | |
- Changes directory to the differentiable renderer folder and runs a shell | |
script to compile the mesh painter. | |
- Installs a custom rasterizer wheel package via pip. | |
Note: | |
This setup assumes the script is running in the Huggingface environment | |
with the specified directory structure. | |
""" | |
import os, spaces, subprocess, sys, shlex | |
from spaces import zero | |
def install_cuda_toolkit(): | |
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" | |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" | |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
os.environ["CUDA_HOME"], | |
"" | |
if "LD_LIBRARY_PATH" not in os.environ | |
else os.environ["LD_LIBRARY_PATH"], | |
) | |
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
def prepare_env(): | |
# print('install custom') | |
# os.system(f"cd /home/user/app/hy3dpaint/custom_rasterizer && {pythonpath} -m pip install -e .") | |
# os.system(f"cd /home/user/app/hy3dpaint/packages/custom_rasterizer && pip install -e .") | |
subprocess.run( | |
shlex.split( | |
"pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl" | |
), | |
check=True, | |
) | |
print( | |
"cd /home/user/app/hy3dpaint/differentiable_renderer/ && bash compile_mesh_painter.sh" | |
) | |
os.system( | |
"cd /home/user/app/hy3dpaint/DifferentiableRenderer && bash compile_mesh_painter.sh" | |
) | |
# print("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt") | |
# os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt") | |
def check(): | |
import custom_rasterizer | |
print(type(custom_rasterizer)) | |
print(dir(custom_rasterizer)) | |
print(getattr(custom_rasterizer, "__file__", None)) | |
package_dir = None | |
if hasattr(custom_rasterizer, "__file__") and custom_rasterizer.__file__: | |
package_dir = os.path.dirname(custom_rasterizer.__file__) | |
elif hasattr(custom_rasterizer, "__path__"): | |
package_dir = list(custom_rasterizer.__path__)[0] | |
else: | |
raise RuntimeError("Cannot determine package path") | |
print(package_dir) | |
for root, dirs, files in os.walk(package_dir): | |
level = root.replace(package_dir, "").count(os.sep) | |
indent = " " * 4 * level | |
print(f"{indent}{os.path.basename(root)}/") | |
subindent = " " * 4 * (level + 1) | |
for f in files: | |
print(f"{subindent}{f}") | |
# print(torch.__version__) | |
# install_cuda_toolkit() | |
print(torch.__version__) | |
prepare_env() | |
check() | |
else: | |
""" | |
Define a dummy `spaces` module with a GPU decorator class for local environment. | |
The GPU decorator is a no-op that simply returns the decorated function unchanged. | |
This allows code that uses the `spaces.GPU` decorator to run without modification locally. | |
""" | |
import os, spaces, subprocess, sys, shlex | |
def install_cuda_toolkit(): | |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" | |
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" | |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
os.environ["CUDA_HOME"], | |
"" | |
if "LD_LIBRARY_PATH" not in os.environ | |
else os.environ["LD_LIBRARY_PATH"], | |
) | |
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" | |
def prepare_env(): | |
# print('install custom') | |
# os.system(f"cd /home/user/app/hy3dpaint/custom_rasterizer && {pythonpath} -m pip install -e .") | |
# os.system(f"cd /home/user/app/hy3dpaint/packages/custom_rasterizer && pip install -e .") | |
subprocess.run( | |
shlex.split( | |
"pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl" | |
), | |
check=True, | |
) | |
print( | |
"cd /home/user/app/hy3dpaint/differentiable_renderer/ && bash compile_mesh_painter.sh" | |
) | |
os.system( | |
"cd /home/user/app/hy3dpaint/DifferentiableRenderer && bash compile_mesh_painter.sh" | |
) | |
# print("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt") | |
# os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /home/user/app/hy3dpaint/ckpt") | |
def check(): | |
import custom_rasterizer | |
print(type(custom_rasterizer)) | |
print(dir(custom_rasterizer)) | |
print(getattr(custom_rasterizer, "__file__", None)) | |
package_dir = None | |
if hasattr(custom_rasterizer, "__file__") and custom_rasterizer.__file__: | |
package_dir = os.path.dirname(custom_rasterizer.__file__) | |
elif hasattr(custom_rasterizer, "__path__"): | |
package_dir = list(custom_rasterizer.__path__)[0] | |
else: | |
raise RuntimeError("Cannot determine package path") | |
print(package_dir) | |
for root, dirs, files in os.walk(package_dir): | |
level = root.replace(package_dir, "").count(os.sep) | |
indent = " " * 4 * level | |
print(f"{indent}{os.path.basename(root)}/") | |
subindent = " " * 4 * (level + 1) | |
for f in files: | |
print(f"{subindent}{f}") | |
# print(torch.__version__) | |
# install_cuda_toolkit() | |
print(torch.__version__) | |
prepare_env() | |
check() | |
class spaces: | |
class GPU: | |
def __init__(self, duration=60): | |
self.duration = duration | |
def __call__(self, func): | |
return func | |
def get_example_img_list(): | |
""" | |
Load and return a sorted list of example image file paths. | |
Searches recursively for PNG images under the './assets/example_images/' directory. | |
Returns: | |
list[str]: Sorted list of file paths to example PNG images. | |
""" | |
print("Loading example img list ...") | |
return sorted(glob("./assets/example_images/**/*.png", recursive=True)) | |
def get_example_txt_list(): | |
""" | |
Load and return a list of example text prompts. | |
Reads lines from the './assets/example_prompts.txt' file, stripping whitespace. | |
Returns: | |
list[str]: List of example text prompts. | |
""" | |
print("Loading example txt list ...") | |
txt_list = list() | |
for line in open("./assets/example_prompts.txt", encoding="utf-8"): | |
txt_list.append(line.strip()) | |
return txt_list | |
def gen_save_folder(max_size=200): | |
""" | |
Generate a new save folder inside SAVE_DIR, maintaining a maximum number of folders. | |
If the number of existing folders in SAVE_DIR exceeds `max_size`, the oldest folder is removed. | |
Args: | |
max_size (int, optional): Maximum number of folders to keep in SAVE_DIR. Defaults to 200. | |
Returns: | |
str: Path to the newly created save folder. | |
""" | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] | |
if len(dirs) >= max_size: | |
oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) | |
shutil.rmtree(oldest_dir) | |
print(f"Removed the oldest folder: {oldest_dir}") | |
new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) | |
os.makedirs(new_folder, exist_ok=True) | |
print(f"Created new folder: {new_folder}") | |
return new_folder | |
# Removed complex PBR conversion functions - using simple trimesh-based conversion | |
def export_mesh(mesh, save_folder, textured=False, type="glb"): | |
""" | |
Export a mesh to a file in the specified folder, optionally including textures. | |
Args: | |
mesh (trimesh.Trimesh): The mesh object to export. | |
save_folder (str): Directory path where the mesh file will be saved. | |
textured (bool, optional): Whether to include textures/normals in the export. Defaults to False. | |
type (str, optional): File format to export ('glb' or 'obj' supported). Defaults to 'glb'. | |
Returns: | |
str: The full path to the exported mesh file. | |
""" | |
if textured: | |
path = os.path.join(save_folder, f"textured_mesh.{type}") | |
else: | |
path = os.path.join(save_folder, f"white_mesh.{type}") | |
if type not in ["glb", "obj"]: | |
mesh.export(path) | |
else: | |
mesh.export(path, include_normals=textured) | |
return path | |
def quick_convert_with_obj2gltf(obj_path: str, glb_path: str) -> bool: | |
# 执行转换 | |
textures = { | |
"albedo": obj_path.replace(".obj", ".jpg"), | |
"metallic": obj_path.replace(".obj", "_metallic.jpg"), | |
"roughness": obj_path.replace(".obj", "_roughness.jpg"), | |
} | |
create_glb_with_pbr_materials(obj_path, textures, glb_path) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
# Remove first folder from path to make relative path | |
if textured: | |
related_path = f"./textured_mesh.glb" | |
template_name = "./assets/modelviewer-textured-template.html" | |
output_html_path = os.path.join(save_folder, f"textured_mesh.html") | |
else: | |
related_path = f"./white_mesh.glb" | |
template_name = "./assets/modelviewer-template.html" | |
output_html_path = os.path.join(save_folder, f"white_mesh.html") | |
offset = 50 if textured else 10 | |
with open(os.path.join(CURRENT_DIR, template_name), "r", encoding="utf-8") as f: | |
template_html = f.read() | |
with open(output_html_path, "w", encoding="utf-8") as f: | |
template_html = template_html.replace("#height#", f"{height - offset}") | |
template_html = template_html.replace("#width#", f"{width}") | |
template_html = template_html.replace("#src#", f"{related_path}/") | |
f.write(template_html) | |
rel_path = os.path.relpath(output_html_path, SAVE_DIR) | |
iframe_tag = f'<iframe src="/static/{rel_path}" \ | |
height="{height}" width="100%" frameborder="0"></iframe>' | |
print( | |
f"Find html file {output_html_path}, \ | |
{os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}" | |
) | |
return f""" | |
<div style='height: {height}; width: 100%;'> | |
{iframe_tag} | |
</div> | |
""" | |
def _gen_shape( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
if not MV_MODE and image is None and caption is None: | |
raise gr.Error("Please provide either a caption or an image.") | |
if MV_MODE: | |
if ( | |
mv_image_front is None | |
and mv_image_back is None | |
and mv_image_left is None | |
and mv_image_right is None | |
): | |
raise gr.Error("Please provide at least one view image.") | |
image = {} | |
if mv_image_front: | |
image["front"] = mv_image_front | |
if mv_image_back: | |
image["back"] = mv_image_back | |
if mv_image_left: | |
image["left"] = mv_image_left | |
if mv_image_right: | |
image["right"] = mv_image_right | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
octree_resolution = int(octree_resolution) | |
if caption: | |
print("prompt is", caption) | |
save_folder = gen_save_folder() | |
stats = { | |
"model": { | |
"shapegen": f"{args.model_path}/{args.subfolder}", | |
"texgen": f"{args.texgen_model_path}", | |
}, | |
"params": { | |
"caption": caption, | |
"steps": steps, | |
"guidance_scale": guidance_scale, | |
"seed": seed, | |
"octree_resolution": octree_resolution, | |
"check_box_rembg": check_box_rembg, | |
"num_chunks": num_chunks, | |
}, | |
} | |
time_meta = {} | |
if image is None: | |
start_time = time.time() | |
try: | |
image = t2i_worker(caption) | |
except Exception as e: | |
raise gr.Error( | |
f"Text to 3D is disable. \ | |
Please enable it by `python gradio_app.py --enable_t23d`." | |
) | |
time_meta["text2image"] = time.time() - start_time | |
# remove disk io to make responding faster, uncomment at your will. | |
# image.save(os.path.join(save_folder, 'input.png')) | |
if MV_MODE: | |
start_time = time.time() | |
for k, v in image.items(): | |
if check_box_rembg or v.mode == "RGB": | |
img = rmbg_worker(v.convert("RGB")) | |
image[k] = img | |
time_meta["remove background"] = time.time() - start_time | |
else: | |
if check_box_rembg or image.mode == "RGB": | |
start_time = time.time() | |
image = rmbg_worker(image.convert("RGB")) | |
time_meta["remove background"] = time.time() - start_time | |
# remove disk io to make responding faster, uncomment at your will. | |
# image.save(os.path.join(save_folder, 'rembg.png')) | |
# image to white model | |
start_time = time.time() | |
generator = torch.Generator() | |
generator = generator.manual_seed(int(seed)) | |
outputs = i23d_worker( | |
image=image, | |
num_inference_steps=steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
octree_resolution=octree_resolution, | |
num_chunks=num_chunks, | |
output_type="mesh", | |
) | |
time_meta["shape generation"] = time.time() - start_time | |
logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time)) | |
tmp_start = time.time() | |
mesh = export_to_trimesh(outputs)[0] | |
time_meta["export to trimesh"] = time.time() - tmp_start | |
stats["number_of_faces"] = mesh.faces.shape[0] | |
stats["number_of_vertices"] = mesh.vertices.shape[0] | |
stats["time"] = time_meta | |
main_image = image if not MV_MODE else image["front"] | |
return mesh, main_image, save_folder, stats, seed | |
def generation_all( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
start_time_0 = time.time() | |
mesh, image, save_folder, stats, seed = _gen_shape( | |
caption, | |
image, | |
mv_image_front=mv_image_front, | |
mv_image_back=mv_image_back, | |
mv_image_left=mv_image_left, | |
mv_image_right=mv_image_right, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg, | |
num_chunks=num_chunks, | |
randomize_seed=randomize_seed, | |
) | |
path = export_mesh(mesh, save_folder, textured=False) | |
print(path) | |
print("=" * 40) | |
# tmp_time = time.time() | |
# mesh = floater_remove_worker(mesh) | |
# mesh = degenerate_face_remove_worker(mesh) | |
# logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time)) | |
# stats['time']['postprocessing'] = time.time() - tmp_time | |
tmp_time = time.time() | |
mesh = face_reduce_worker(mesh) | |
# path = export_mesh(mesh, save_folder, textured=False, type='glb') | |
path = export_mesh( | |
mesh, save_folder, textured=False, type="obj" | |
) # 这样操作也会 core dump | |
logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time)) | |
stats["time"]["face reduction"] = time.time() - tmp_time | |
tmp_time = time.time() | |
text_path = os.path.join(save_folder, f"textured_mesh.obj") | |
path_textured = tex_pipeline( | |
mesh_path=path, image_path=image, output_mesh_path=text_path, save_glb=False | |
) | |
logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time)) | |
stats["time"]["texture generation"] = time.time() - tmp_time | |
tmp_time = time.time() | |
# Convert textured OBJ to GLB using obj2gltf with PBR support | |
glb_path_textured = os.path.join(save_folder, "textured_mesh.glb") | |
conversion_success = quick_convert_with_obj2gltf(path_textured, glb_path_textured) | |
logger.info( | |
"---Convert textured OBJ to GLB takes %s seconds ---" % (time.time() - tmp_time) | |
) | |
stats["time"]["convert textured OBJ to GLB"] = time.time() - tmp_time | |
stats["time"]["total"] = time.time() - start_time_0 | |
model_viewer_html_textured = build_model_viewer_html( | |
save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=True | |
) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
return ( | |
gr.update(value=path), | |
gr.update(value=glb_path_textured), | |
model_viewer_html_textured, | |
stats, | |
seed, | |
) | |
def shape_generation( | |
caption=None, | |
image=None, | |
mv_image_front=None, | |
mv_image_back=None, | |
mv_image_left=None, | |
mv_image_right=None, | |
steps=50, | |
guidance_scale=7.5, | |
seed=1234, | |
octree_resolution=256, | |
check_box_rembg=False, | |
num_chunks=200000, | |
randomize_seed: bool = False, | |
): | |
start_time_0 = time.time() | |
mesh, image, save_folder, stats, seed = _gen_shape( | |
caption, | |
image, | |
mv_image_front=mv_image_front, | |
mv_image_back=mv_image_back, | |
mv_image_left=mv_image_left, | |
mv_image_right=mv_image_right, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed, | |
octree_resolution=octree_resolution, | |
check_box_rembg=check_box_rembg, | |
num_chunks=num_chunks, | |
randomize_seed=randomize_seed, | |
) | |
stats["time"]["total"] = time.time() - start_time_0 | |
mesh.metadata["extras"] = stats | |
path = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html( | |
save_folder, height=HTML_HEIGHT, width=HTML_WIDTH | |
) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
return ( | |
gr.update(value=path), | |
model_viewer_html, | |
stats, | |
seed, | |
) | |
def build_app(): | |
title = "High Resolution Textured 3D Assets Generation" | |
if MV_MODE: | |
title = "Image to 3D Generation with 1-4 Views" | |
if "mini" in args.subfolder: | |
title = "Strong 0.6B Image to Shape Generator" | |
title = "Image to 3D Generation" | |
if TURBO_MODE: | |
title = title.replace(":", "-Turbo: Fast ") | |
title_html = f""" | |
<div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> | |
{title} | |
</div> | |
<div align="center"> | |
Imagine Team | |
</div> | |
""" | |
custom_css = """ | |
.app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) { | |
max-width: 1480px; | |
} | |
.mv-image button .wrap { | |
font-size: 10px; | |
} | |
.mv-image .icon-wrap { | |
width: 20px; | |
} | |
""" | |
with gr.Blocks( | |
theme=gr.themes.Base(), | |
title="Image to 3D Generation", | |
analytics_enabled=False, | |
css=custom_css, | |
) as demo: | |
gr.HTML(title_html) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Tabs(selected="tab_img_prompt") as tabs_prompt: | |
with gr.Tab( | |
"Image Prompt", id="tab_img_prompt", visible=not MV_MODE | |
) as tab_ip: | |
image = gr.Image( | |
label="Image", type="pil", image_mode="RGBA", height=290 | |
) | |
caption = gr.State(None) | |
# with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp: | |
# caption = gr.Textbox(label='Text Prompt', | |
# placeholder='HunyuanDiT will be used to generate image.', | |
# info='Example: A 3D model of a cute cat, white background') | |
with gr.Tab("MultiView Prompt", visible=MV_MODE) as tab_mv: | |
# gr.Label('Please upload at least one front image.') | |
with gr.Row(): | |
mv_image_front = gr.Image( | |
label="Front", | |
type="pil", | |
image_mode="RGBA", | |
height=140, | |
min_width=100, | |
elem_classes="mv-image", | |
) | |
mv_image_back = gr.Image( | |
label="Back", | |
type="pil", | |
image_mode="RGBA", | |
height=140, | |
min_width=100, | |
elem_classes="mv-image", | |
) | |
with gr.Row(): | |
mv_image_left = gr.Image( | |
label="Left", | |
type="pil", | |
image_mode="RGBA", | |
height=140, | |
min_width=100, | |
elem_classes="mv-image", | |
) | |
mv_image_right = gr.Image( | |
label="Right", | |
type="pil", | |
image_mode="RGBA", | |
height=140, | |
min_width=100, | |
elem_classes="mv-image", | |
) | |
with gr.Row(): | |
btn = gr.Button(value="Gen Shape", variant="primary", min_width=100) | |
btn_all = gr.Button( | |
value="Gen Textured Shape", | |
variant="primary", | |
visible=HAS_TEXTUREGEN, | |
min_width=100, | |
) | |
with gr.Group(): | |
file_out = gr.File(label="File", visible=False) | |
file_out2 = gr.File(label="File", visible=False) | |
with gr.Tabs(selected="tab_options" if TURBO_MODE else "tab_export"): | |
with gr.Tab("Options", id="tab_options", visible=TURBO_MODE): | |
gen_mode = gr.Radio( | |
label="Generation Mode", | |
info="Recommendation: Turbo for most cases, \ | |
Fast for very complex cases, Standard seldom use.", | |
choices=["Turbo", "Fast", "Standard"], | |
value="Turbo", | |
) | |
decode_mode = gr.Radio( | |
label="Decoding Mode", | |
info="The resolution for exporting mesh from generated vectset", | |
choices=["Low", "Standard", "High"], | |
value="Standard", | |
) | |
with gr.Tab("Advanced Options", id="tab_advanced_options"): | |
with gr.Row(): | |
check_box_rembg = gr.Checkbox( | |
value=True, label="Remove Background", min_width=100 | |
) | |
randomize_seed = gr.Checkbox( | |
label="Randomize seed", value=True, min_width=100 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=1234, | |
min_width=100, | |
) | |
with gr.Row(): | |
num_steps = gr.Slider( | |
maximum=100, | |
minimum=1, | |
value=5 if "turbo" in args.subfolder else 30, | |
step=1, | |
label="Inference Steps", | |
) | |
octree_resolution = gr.Slider( | |
maximum=512, | |
minimum=16, | |
value=256, | |
label="Octree Resolution", | |
) | |
with gr.Row(): | |
cfg_scale = gr.Number( | |
value=5.0, label="Guidance Scale", min_width=100 | |
) | |
num_chunks = gr.Slider( | |
maximum=5000000, | |
minimum=1000, | |
value=8000, | |
label="Number of Chunks", | |
min_width=100, | |
) | |
with gr.Tab("Export", id="tab_export"): | |
with gr.Row(): | |
file_type = gr.Dropdown( | |
label="File Type", | |
choices=SUPPORTED_FORMATS, | |
value="glb", | |
min_width=100, | |
) | |
reduce_face = gr.Checkbox( | |
label="Simplify Mesh", value=False, min_width=100 | |
) | |
export_texture = gr.Checkbox( | |
label="Include Texture", | |
value=False, | |
visible=False, | |
min_width=100, | |
) | |
target_face_num = gr.Slider( | |
maximum=1000000, | |
minimum=100, | |
value=10000, | |
label="Target Face Number", | |
) | |
with gr.Row(): | |
confirm_export = gr.Button(value="Transform", min_width=100) | |
file_export = gr.DownloadButton( | |
label="Download", | |
variant="primary", | |
interactive=False, | |
min_width=100, | |
) | |
with gr.Column(scale=6): | |
with gr.Tabs(selected="gen_mesh_panel") as tabs_output: | |
with gr.Tab("Generated Mesh", id="gen_mesh_panel"): | |
html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label="Output") | |
with gr.Tab("Exporting Mesh", id="export_mesh_panel"): | |
html_export_mesh = gr.HTML( | |
HTML_OUTPUT_PLACEHOLDER, label="Output" | |
) | |
with gr.Tab("Mesh Statistic", id="stats_panel"): | |
stats = gr.Json({}, label="Mesh Stats") | |
with gr.Column(scale=3 if MV_MODE else 2): | |
with gr.Tabs(selected="tab_img_gallery") as gallery: | |
with gr.Tab( | |
"Image to 3D Gallery", id="tab_img_gallery", visible=not MV_MODE | |
) as tab_gi: | |
with gr.Row(): | |
gr.Examples( | |
examples=example_is, | |
inputs=[image], | |
label=None, | |
examples_per_page=18, | |
) | |
tab_ip.select(fn=lambda: gr.update(selected="tab_img_gallery"), outputs=gallery) | |
# if HAS_T2I: | |
# tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery) | |
btn.click( | |
shape_generation, | |
inputs=[ | |
caption, | |
image, | |
mv_image_front, | |
mv_image_back, | |
mv_image_left, | |
mv_image_right, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
num_chunks, | |
randomize_seed, | |
], | |
outputs=[file_out, html_gen_mesh, stats, seed], | |
).then( | |
lambda: ( | |
gr.update(visible=False, value=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=False), | |
), | |
outputs=[export_texture, reduce_face, confirm_export, file_export], | |
).then( | |
lambda: gr.update(selected="gen_mesh_panel"), | |
outputs=[tabs_output], | |
) | |
btn_all.click( | |
generation_all, | |
inputs=[ | |
caption, | |
image, | |
mv_image_front, | |
mv_image_back, | |
mv_image_left, | |
mv_image_right, | |
num_steps, | |
cfg_scale, | |
seed, | |
octree_resolution, | |
check_box_rembg, | |
num_chunks, | |
randomize_seed, | |
], | |
outputs=[file_out, file_out2, html_gen_mesh, stats, seed], | |
).then( | |
lambda: ( | |
gr.update(visible=True, value=True), | |
gr.update(interactive=False), | |
gr.update(interactive=True), | |
gr.update(interactive=False), | |
), | |
outputs=[export_texture, reduce_face, confirm_export, file_export], | |
).then( | |
lambda: gr.update(selected="gen_mesh_panel"), | |
outputs=[tabs_output], | |
) | |
def on_gen_mode_change(value): | |
if value == "Turbo": | |
return gr.update(value=5) | |
elif value == "Fast": | |
return gr.update(value=10) | |
else: | |
return gr.update(value=30) | |
gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps]) | |
def on_decode_mode_change(value): | |
if value == "Low": | |
return gr.update(value=196) | |
elif value == "Standard": | |
return gr.update(value=256) | |
else: | |
return gr.update(value=384) | |
decode_mode.change( | |
on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution] | |
) | |
def on_export_click( | |
file_out, file_out2, file_type, reduce_face, export_texture, target_face_num | |
): | |
if file_out is None: | |
raise gr.Error("Please generate a mesh first.") | |
print(f"exporting {file_out}") | |
print(f"reduce face to {target_face_num}") | |
if export_texture: | |
mesh = trimesh.load(file_out2) | |
save_folder = gen_save_folder() | |
path = export_mesh(mesh, save_folder, textured=True, type=file_type) | |
# for preview | |
save_folder = gen_save_folder() | |
_ = export_mesh(mesh, save_folder, textured=True) | |
model_viewer_html = build_model_viewer_html( | |
save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=True | |
) | |
else: | |
mesh = trimesh.load(file_out) | |
mesh = floater_remove_worker(mesh) | |
mesh = degenerate_face_remove_worker(mesh) | |
if reduce_face: | |
mesh = face_reduce_worker(mesh, target_face_num) | |
save_folder = gen_save_folder() | |
path = export_mesh(mesh, save_folder, textured=False, type=file_type) | |
# for preview | |
save_folder = gen_save_folder() | |
_ = export_mesh(mesh, save_folder, textured=False) | |
model_viewer_html = build_model_viewer_html( | |
save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, textured=False | |
) | |
print(f"export to {path}") | |
return model_viewer_html, gr.update(value=path, interactive=True) | |
confirm_export.click( | |
lambda: gr.update(selected="export_mesh_panel"), | |
outputs=[tabs_output], | |
).then( | |
on_export_click, | |
inputs=[ | |
file_out, | |
file_out2, | |
file_type, | |
reduce_face, | |
export_texture, | |
target_face_num, | |
], | |
outputs=[html_export_mesh, file_export], | |
) | |
return demo | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="tencent/Hunyuan3D-2.1") | |
parser.add_argument("--subfolder", type=str, default="hunyuan3d-dit-v2-1") | |
parser.add_argument( | |
"--texgen_model_path", type=str, default="tencent/Hunyuan3D-2.1" | |
) | |
parser.add_argument("--port", type=int, default=7860) | |
parser.add_argument("--host", type=str, default="0.0.0.0") | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--mc_algo", type=str, default="mc") | |
parser.add_argument("--cache-path", type=str, default="/root/save_dir") | |
parser.add_argument("--enable_t23d", action="store_true") | |
parser.add_argument("--disable_tex", action="store_true") | |
parser.add_argument("--enable_flashvdm", action="store_true") | |
parser.add_argument("--compile", action="store_true") | |
parser.add_argument("--low_vram_mode", action="store_true") | |
args = parser.parse_args() | |
args.enable_flashvdm = False | |
SAVE_DIR = args.cache_path | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
MV_MODE = "mv" in args.model_path | |
TURBO_MODE = "turbo" in args.subfolder | |
HTML_HEIGHT = 690 if MV_MODE else 650 | |
HTML_WIDTH = 500 | |
HTML_OUTPUT_PLACEHOLDER = f""" | |
<div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> | |
<div style='text-align: center; font-size: 16px; color: #6b7280;'> | |
<p style="color: #8d8d8d;">Welcome to Imagine!</p> | |
<p style="color: #8d8d8d;">No mesh here.</p> | |
</div> | |
</div> | |
""" | |
INPUT_MESH_HTML = """ | |
<div style='height: 490px; width: 100%; border-radius: 8px; | |
border-color: #e5e7eb; order-style: solid; border-width: 1px;'> | |
</div> | |
""" | |
example_is = get_example_img_list() | |
example_ts = get_example_txt_list() | |
SUPPORTED_FORMATS = ["glb", "obj", "ply", "stl"] | |
HAS_TEXTUREGEN = True | |
args.disable_tex = False | |
if not args.disable_tex: | |
try: | |
# Apply torchvision fix before importing basicsr/RealESRGAN | |
print("Applying torchvision compatibility fix for texture generation...") | |
try: | |
from torchvision_fix import apply_fix | |
fix_result = apply_fix() | |
if not fix_result: | |
print( | |
"Warning: Torchvision fix may not have been applied successfully" | |
) | |
except Exception as fix_error: | |
print(f"Warning: Failed to apply torchvision fix: {fix_error}") | |
# from hy3dgen.texgen import Hunyuan3DPaintPipeline | |
# texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path) | |
# if args.low_vram_mode: | |
# texgen_worker.enable_model_cpu_offload() | |
from hy3dpaint.textureGenPipeline import ( | |
Hunyuan3DPaintPipeline, | |
Hunyuan3DPaintConfig, | |
) | |
conf = Hunyuan3DPaintConfig(max_num_view=8, resolution=768) | |
conf.realesrgan_ckpt_path = "hy3dpaint/ckpt/RealESRGAN_x4plus.pth" | |
conf.multiview_cfg_path = "hy3dpaint/cfgs/hunyuan-paint-pbr.yaml" | |
conf.custom_pipeline = "hy3dpaint/hunyuanpaintpbr" | |
tex_pipeline = Hunyuan3DPaintPipeline(conf) | |
# Not help much, ignore for now. | |
# if args.compile: | |
# texgen_worker.models['delight_model'].pipeline.unet.compile() | |
# texgen_worker.models['delight_model'].pipeline.vae.compile() | |
# texgen_worker.models['multiview_model'].pipeline.unet.compile() | |
# texgen_worker.models['multiview_model'].pipeline.vae.compile() | |
HAS_TEXTUREGEN = True | |
except Exception as e: | |
print(f"Error loading texture generator: {e}") | |
print("Failed to load texture generator.") | |
print("Please try to install requirements by following README.md") | |
HAS_TEXTUREGEN = False | |
# HAS_T2I = True | |
# if args.enable_t23d: | |
# from hy3dgen.text2image import HunyuanDiTPipeline | |
# t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled') | |
# HAS_T2I = True | |
from hy3dshape import ( | |
FaceReducer, | |
FloaterRemover, | |
DegenerateFaceRemover, | |
MeshSimplifier, | |
Hunyuan3DDiTFlowMatchingPipeline, | |
) | |
from hy3dshape.pipelines import export_to_trimesh | |
from hy3dshape.rembg import BackgroundRemover | |
rmbg_worker = BackgroundRemover() | |
i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( | |
args.model_path, | |
subfolder=args.subfolder, | |
use_safetensors=False, | |
device=args.device, | |
) | |
if args.enable_flashvdm: | |
mc_algo = "mc" if args.device in ["cpu", "mps"] else args.mc_algo | |
i23d_worker.enable_flashvdm(mc_algo=mc_algo) | |
if args.compile: | |
i23d_worker.compile() | |
floater_remove_worker = FloaterRemover() | |
degenerate_face_remove_worker = DegenerateFaceRemover() | |
face_reduce_worker = FaceReducer() | |
# https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
# create a FastAPI app | |
app = FastAPI() | |
# create a static directory to store the static files | |
static_dir = Path(SAVE_DIR).absolute() | |
static_dir.mkdir(parents=True, exist_ok=True) | |
app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static") | |
shutil.copytree( | |
"./assets/env_maps", os.path.join(static_dir, "env_maps"), dirs_exist_ok=True | |
) | |
if args.low_vram_mode: | |
torch.cuda.empty_cache() | |
demo = build_app() | |
app = gr.mount_gradio_app(app, demo, path="/") | |
if ENV == "Huggingface": | |
# for Zerogpu | |
from spaces import zero | |
zero.startup() | |
uvicorn.run(app, host=args.host, port=args.port) | |