Update app2.py
Browse files
app2.py
CHANGED
|
@@ -31,7 +31,7 @@ import sys
|
|
| 31 |
sys.path.append("../")
|
| 32 |
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
| 33 |
#from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
| 34 |
-
|
| 35 |
from utils.seed_all import seed_all
|
| 36 |
import matplotlib.pyplot as plt
|
| 37 |
from utils.de_normalized import align_scale_shift
|
|
@@ -56,13 +56,20 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variation
|
|
| 56 |
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
| 57 |
|
| 58 |
unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
|
| 59 |
-
|
| 60 |
|
| 61 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
| 62 |
image_encoder=image_encoder,
|
| 63 |
feature_extractor=feature_extractor,
|
| 64 |
unet=unet,
|
| 65 |
scheduler=scheduler)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
try:
|
| 68 |
import xformers
|
|
@@ -78,20 +85,34 @@ def depth_normal(img,
|
|
| 78 |
denoising_steps,
|
| 79 |
ensemble_size,
|
| 80 |
processing_res,
|
| 81 |
-
|
| 82 |
domain):
|
| 83 |
|
| 84 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
depth_colored = pipe_out.depth_colored
|
| 97 |
normal_colored = pipe_out.normal_colored
|
|
@@ -152,13 +173,13 @@ def run_demo():
|
|
| 152 |
label="Data Type (Must Select One matches your image)",
|
| 153 |
value="indoor",
|
| 154 |
)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
denoising_steps = gr.Slider(
|
| 163 |
label="Number of denoising steps (More stepes, better quality)",
|
| 164 |
minimum=1,
|
|
@@ -195,7 +216,7 @@ def run_demo():
|
|
| 195 |
inputs=[input_image, denoising_steps,
|
| 196 |
ensemble_size,
|
| 197 |
processing_res,
|
| 198 |
-
|
| 199 |
domain],
|
| 200 |
outputs=[depth, normal]
|
| 201 |
)
|
|
|
|
| 31 |
sys.path.append("../")
|
| 32 |
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
| 33 |
#from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
| 34 |
+
from models.depth_normal_pipeline_clip_cfg_1 import DepthNormalEstimationPipeline as DepthNormalEstimationPipelineCFG
|
| 35 |
from utils.seed_all import seed_all
|
| 36 |
import matplotlib.pyplot as plt
|
| 37 |
from utils.de_normalized import align_scale_shift
|
|
|
|
| 56 |
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
| 57 |
|
| 58 |
unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
|
| 59 |
+
unet_cfg = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
|
| 60 |
|
| 61 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
| 62 |
image_encoder=image_encoder,
|
| 63 |
feature_extractor=feature_extractor,
|
| 64 |
unet=unet,
|
| 65 |
scheduler=scheduler)
|
| 66 |
+
|
| 67 |
+
pipe_cfg = DepthNormalEstimationPipelineCFG(vae=vae,
|
| 68 |
+
image_encoder=image_encoder,
|
| 69 |
+
feature_extractor=feature_extractor,
|
| 70 |
+
unet=unet_cfg,
|
| 71 |
+
scheduler=scheduler)
|
| 72 |
+
|
| 73 |
|
| 74 |
try:
|
| 75 |
import xformers
|
|
|
|
| 85 |
denoising_steps,
|
| 86 |
ensemble_size,
|
| 87 |
processing_res,
|
| 88 |
+
guidance_scale,
|
| 89 |
domain):
|
| 90 |
|
| 91 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
| 92 |
+
|
| 93 |
+
if guidance_scale > 0:
|
| 94 |
+
pipe_out = pipe_cfg(
|
| 95 |
+
img,
|
| 96 |
+
denoising_steps=denoising_steps,
|
| 97 |
+
ensemble_size=ensemble_size,
|
| 98 |
+
processing_res=processing_res,
|
| 99 |
+
batch_size=0,
|
| 100 |
+
guidance_scale=guidance_scale,
|
| 101 |
+
domain=domain,
|
| 102 |
+
show_progress_bar=True,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
else:
|
| 106 |
+
pipe_out = pipe(
|
| 107 |
+
img,
|
| 108 |
+
denoising_steps=denoising_steps,
|
| 109 |
+
ensemble_size=ensemble_size,
|
| 110 |
+
processing_res=processing_res,
|
| 111 |
+
batch_size=0,
|
| 112 |
+
#guidance_scale=guidance_scale,
|
| 113 |
+
domain=domain,
|
| 114 |
+
show_progress_bar=True,
|
| 115 |
+
)
|
| 116 |
|
| 117 |
depth_colored = pipe_out.depth_colored
|
| 118 |
normal_colored = pipe_out.normal_colored
|
|
|
|
| 173 |
label="Data Type (Must Select One matches your image)",
|
| 174 |
value="indoor",
|
| 175 |
)
|
| 176 |
+
guidance_scale = gr.Slider(
|
| 177 |
+
label="Classifier Free Guidance Scale, 0 for without guidance",
|
| 178 |
+
minimum=0,
|
| 179 |
+
maximum=5,
|
| 180 |
+
step=1,
|
| 181 |
+
value=0,
|
| 182 |
+
)
|
| 183 |
denoising_steps = gr.Slider(
|
| 184 |
label="Number of denoising steps (More stepes, better quality)",
|
| 185 |
minimum=1,
|
|
|
|
| 216 |
inputs=[input_image, denoising_steps,
|
| 217 |
ensemble_size,
|
| 218 |
processing_res,
|
| 219 |
+
guidance_scale,
|
| 220 |
domain],
|
| 221 |
outputs=[depth, normal]
|
| 222 |
)
|