Spaces:
Running
Running
File size: 8,718 Bytes
6f37261 516f18a 6f37261 516f18a 6f37261 44668bc 24c922b 6f37261 516f18a 6f37261 44668bc 516f18a 2ea7db4 44668bc 516f18a 6f37261 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 6f37261 516f18a 6f37261 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 516f18a 44668bc 2ea7db4 516f18a 2ea7db4 516f18a 2ea7db4 516f18a 2ea7db4 516f18a 2ea7db4 44668bc 2ea7db4 6f37261 2ea7db4 516f18a 2ea7db4 6f37261 2ea7db4 44668bc 24c922b 44668bc 6f37261 44668bc 2ea7db4 516f18a 2ea7db4 24c922b 516f18a 44668bc 516f18a 2ea7db4 516f18a 44668bc 2ea7db4 516f18a 24c922b 44668bc 516f18a 44668bc 6f37261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import gradio as gr
import folium
from folium import plugins
import requests
import pandas as pd
from datetime import datetime
import time
import branca.colormap as cm
import numpy as np
import io
from PIL import Image
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import threading
# OpenSky API URL
BASE_URL = "https://opensky-network.org/api"
# Aircraft photos API (예시 - 실제 구현시에는 적절한 API로 대체 필요)
AIRCRAFT_PHOTOS_API = "https://api.planespotters.net/pub/photos/hex/{icao24}"
def get_aircraft_photo(icao24):
"""Get aircraft photo from Planespotters API"""
try:
response = requests.get(AIRCRAFT_PHOTOS_API.format(icao24=icao24))
data = response.json()
if data.get('photos'):
return data['photos'][0]['thumbnail_large']['src']
except:
# 기본 항공기 이미지 URL 반환
return "https://example.com/default-aircraft.jpg"
def get_states(bounds=None):
"""Get current aircraft states from OpenSky Network"""
params = {}
if bounds:
params.update({
'lamin': bounds[0],
'lomin': bounds[1],
'lamax': bounds[2],
'lomax': bounds[3]
})
try:
response = requests.get(f"{BASE_URL}/states/all", params=params)
data = response.json()
return data
except Exception as e:
print(f"Error fetching data: {e}")
return None
def create_monitoring_dashboard(data):
"""Create monitoring dashboard using Plotly"""
if not data or 'states' not in data:
return None
states = data['states']
# Create subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Altitude Distribution', 'Speed Distribution',
'Aircraft by Country', 'Aircraft Categories')
)
# Altitude distribution
altitudes = [state[7] for state in states if state[7]]
fig.add_trace(
go.Histogram(x=altitudes, name="Altitude"),
row=1, col=1
)
# Speed distribution
speeds = [state[9] for state in states if state[9]]
fig.add_trace(
go.Histogram(x=speeds, name="Speed"),
row=1, col=2
)
# Aircraft by country
countries = pd.Series([state[2] for state in states if state[2]]).value_counts()
fig.add_trace(
go.Bar(x=countries.index[:10], y=countries.values[:10], name="Countries"),
row=2, col=1
)
# Aircraft categories
categories = pd.Series([state[17] for state in states if state[17]]).value_counts()
fig.add_trace(
go.Pie(labels=categories.index, values=categories.values, name="Categories"),
row=2, col=2
)
fig.update_layout(
height=800,
showlegend=False,
template="plotly_dark",
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'
)
return fig
def create_map(region="world"):
"""Create aircraft tracking map"""
bounds = {
"world": None,
"europe": [35.0, -15.0, 60.0, 40.0],
"north_america": [25.0, -130.0, 50.0, -60.0],
"asia": [10.0, 60.0, 50.0, 150.0]
}
data = get_states(bounds.get(region))
if not data or 'states' not in data:
return None, None, "Failed to fetch aircraft data"
m = folium.Map(
location=[30, 0],
zoom_start=3,
tiles='CartoDB dark_matter'
)
heat_data = []
# Add aircraft markers
for state in data['states']:
if state[6] and state[5]:
lat, lon = state[6], state[5]
callsign = state[1] if state[1] else 'N/A'
altitude = state[7] if state[7] else 'N/A'
velocity = state[9] if state[9] else 'N/A'
icao24 = state[0]
heat_data.append([lat, lon, 1])
# Get aircraft photo
photo_url = get_aircraft_photo(icao24)
popup_content = f"""
<div style="font-family: Arial; width: 300px;">
<h4 style="color: #4a90e2;">Flight Information</h4>
<img src="{photo_url}" style="width: 100%; max-height: 200px; object-fit: cover; margin-bottom: 10px;">
<p><b>Callsign:</b> {callsign}</p>
<p><b>ICAO24:</b> {icao24}</p>
<p><b>Altitude:</b> {altitude}m</p>
<p><b>Velocity:</b> {velocity}m/s</p>
<p><b>Origin:</b> {state[2]}</p>
<p><b>Status:</b> {'On Ground' if state[8] else 'In Air'}</p>
</div>
"""
folium.Marker(
location=[lat, lon],
popup=folium.Popup(popup_content, max_width=300),
icon=folium.DivIcon(
html=f'''
<div style="transform: rotate({state[10]}deg)">✈️</div>
''',
icon_size=(20, 20)
)
).add_to(m)
plugins.HeatMap(heat_data, radius=15).add_to(m)
folium.LayerControl().add_to(m)
# Create monitoring dashboard
dashboard = create_monitoring_dashboard(data)
# Create statistics
total_aircraft = len(data['states'])
countries = len(set(state[2] for state in data['states'] if state[2]))
avg_altitude = np.mean([state[7] for state in data['states'] if state[7]]) if data['states'] else 0
in_air = sum(1 for state in data['states'] if not state[8])
on_ground = sum(1 for state in data['states'] if state[8])
stats = f"""
📊 Real-time Statistics:
• Total Aircraft: {total_aircraft}
• Aircraft in Air: {in_air}
• Aircraft on Ground: {on_ground}
• Countries: {countries}
• Average Altitude: {avg_altitude:.0f}m
🔄 Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
return m._repr_html_(), dashboard, stats
# Custom CSS
custom_css = """
.gradio-container {
background: linear-gradient(135deg, #1a1a1a, #2d2d2d) !important;
color: #ffffff !important;
}
.gr-button {
background: linear-gradient(135deg, #4a90e2, #357abd) !important;
border: none !important;
color: white !important;
}
.gr-button:hover {
background: linear-gradient(135deg, #357abd, #4a90e2) !important;
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(74, 144, 226, 0.4) !important;
}
.title-text {
text-align: center !important;
color: #ffffff !important;
font-size: 2.5em !important;
margin-bottom: 0.5em !important;
text-shadow: 2px 2px 4px rgba(0,0,0,0.5) !important;
}
.dashboard {
background: rgba(0, 0, 0, 0.3) !important;
border-radius: 10px !important;
padding: 20px !important;
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(
"""
<div class="title-text">🛩️ Global Aircraft Tracker</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
region_select = gr.Dropdown(
choices=["world", "europe", "north_america", "asia"],
value="world",
label="Select Region"
)
with gr.Column(scale=1):
refresh_btn = gr.Button("🔄 Refresh")
auto_refresh = gr.Checkbox(label="Auto Refresh", value=False)
with gr.Row():
with gr.Column(scale=2):
map_html = gr.HTML()
with gr.Column(scale=1):
stats_text = gr.Textbox(label="Statistics", lines=8)
with gr.Row():
dashboard_plot = gr.Plot(label="Monitoring Dashboard")
def update_map(region):
return create_map(region)
def auto_refresh_function(auto_refresh_state):
while auto_refresh_state:
time.sleep(30) # 30초 대기
map_data, dashboard_data, stats_data = create_map(region_select.value)
map_html.update(value=map_data)
dashboard_plot.update(value=dashboard_data)
stats_text.update(value=stats_data)
refresh_btn.click(
fn=update_map,
inputs=[region_select],
outputs=[map_html, dashboard_plot, stats_text]
)
region_select.change(
fn=update_map,
inputs=[region_select],
outputs=[map_html, dashboard_plot, stats_text]
)
def handle_auto_refresh(auto_refresh_state):
if auto_refresh_state:
threading.Thread(target=auto_refresh_function, args=(True,), daemon=True).start()
auto_refresh.change(
fn=handle_auto_refresh,
inputs=[auto_refresh]
)
# Initial map load
map_html, dashboard_plot, stats_text = create_map("world")
demo.launch() |