File size: 8,170 Bytes
6f37261
516f18a
 
6f37261
516f18a
 
 
 
44668bc
 
6f37261
516f18a
 
6f37261
516f18a
 
 
74fe8d6
 
 
 
 
 
 
 
516f18a
 
 
2ea7db4
74fe8d6
44668bc
74fe8d6
4a0429b
44668bc
4a0429b
44668bc
 
 
4a0429b
 
 
 
 
44668bc
 
 
 
 
4a0429b
 
 
 
 
44668bc
 
 
 
 
 
4a0429b
 
 
 
 
44668bc
 
 
 
 
 
4a0429b
 
 
 
 
 
44668bc
 
 
4a0429b
 
 
44668bc
4a0429b
 
 
 
 
 
44668bc
 
 
4a0429b
44668bc
4a0429b
 
44668bc
4a0429b
 
 
 
 
 
 
 
 
44668bc
 
4a0429b
 
 
 
 
 
 
 
44668bc
 
516f18a
 
74fe8d6
516f18a
 
 
 
 
74fe8d6
 
 
 
 
 
 
 
 
 
516f18a
74fe8d6
 
 
 
 
 
 
 
516f18a
74fe8d6
516f18a
74fe8d6
 
516f18a
 
 
 
6f37261
516f18a
6f37261
516f18a
74fe8d6
516f18a
 
 
 
 
 
 
 
 
 
 
 
 
74fe8d6
516f18a
 
 
 
74fe8d6
 
516f18a
 
74fe8d6
 
 
 
516f18a
 
44668bc
516f18a
 
 
44668bc
 
516f18a
74fe8d6
 
2ea7db4
 
 
 
 
 
 
516f18a
2ea7db4
 
 
 
516f18a
2ea7db4
516f18a
2ea7db4
 
6f37261
74fe8d6
2ea7db4
 
 
74fe8d6
 
2ea7db4
 
cc5d0d1
 
 
44668bc
 
74fe8d6
 
 
 
 
 
6f37261
74fe8d6
 
 
2ea7db4
516f18a
74fe8d6
 
 
 
 
 
 
 
 
24c922b
516f18a
 
 
44668bc
516f18a
2ea7db4
516f18a
 
 
44668bc
2ea7db4
6f37261
74fe8d6
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import gradio as gr
import folium
from folium import plugins
import requests
import pandas as pd
from datetime import datetime
import time
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# OpenSky API URL
BASE_URL = "https://opensky-network.org/api"

def get_states(bounds=None):
    """Get current aircraft states from OpenSky Network"""
    try:
        response = requests.get(f"{BASE_URL}/states/all", 
                              params=bounds if bounds else {},
                              timeout=10)  # 타임아웃 추가
        if response.status_code == 200:
            return response.json()
        else:
            print(f"API Error: {response.status_code}")
            return None
    except Exception as e:
        print(f"Error fetching data: {e}")
        return None

def create_monitoring_dashboard(states):
    """Create monitoring dashboard using Plotly"""
    if not states:
        return go.Figure()

    # Create subplots with specific types
    fig = make_subplots(
        rows=2, cols=2,
        subplot_titles=('Altitude Distribution', 'Speed Distribution', 
                       'Aircraft by Country', 'Aircraft Categories'),
        specs=[
            [{"type": "xy"}, {"type": "xy"}],
            [{"type": "xy"}, {"type": "domain"}]  # pie chart를 위한 domain type
        ]
    )

    # Altitude distribution
    altitudes = [state[7] for state in states if state[7]]
    fig.add_trace(
        go.Histogram(
            x=altitudes, 
            name="Altitude",
            marker_color='#4a90e2'
        ),
        row=1, col=1
    )

    # Speed distribution
    speeds = [state[9] for state in states if state[9]]
    fig.add_trace(
        go.Histogram(
            x=speeds, 
            name="Speed",
            marker_color='#50C878'
        ),
        row=1, col=2
    )

    # Aircraft by country
    countries = pd.Series([state[2] for state in states if state[2]]).value_counts()
    fig.add_trace(
        go.Bar(
            x=countries.index[:10], 
            y=countries.values[:10], 
            name="Countries",
            marker_color='#FF6B6B'
        ),
        row=2, col=1
    )

    # Aircraft categories
    categories = ['Commercial', 'Private', 'Military', 'Other']
    values = [40, 30, 20, 10]  # Example distribution
    fig.add_trace(
        go.Pie(
            labels=categories, 
            values=values,
            name="Categories",
            marker=dict(colors=['#4a90e2', '#50C878', '#FF6B6B', '#FFD700'])
        ),
        row=2, col=2
    )

    # Update layout
    fig.update_layout(
        height=800,
        showlegend=True,
        template="plotly_dark",
        paper_bgcolor='rgba(0,0,0,0.3)',
        plot_bgcolor='rgba(0,0,0,0.1)',
        margin=dict(l=50, r=50, t=50, b=50),
        font=dict(color='white'),
        legend=dict(
            bgcolor='rgba(0,0,0,0.3)',
            bordercolor='rgba(255,255,255,0.2)',
            borderwidth=1
        )
    )

    # Update axes
    fig.update_xaxes(gridcolor='rgba(255,255,255,0.1)', zeroline=False)
    fig.update_yaxes(gridcolor='rgba(255,255,255,0.1)', zeroline=False)

    # Update subplot titles
    for i in fig['layout']['annotations']:
        i['font'] = dict(size=12, color='white')

    return fig

def create_map(region="world"):
    """Create aircraft tracking map"""
    # 기본 맵 생성
    m = folium.Map(
        location=[30, 0],
        zoom_start=3,
        tiles='CartoDB dark_matter'
    )

    # 데이터 가져오기
    bounds = {
        "world": None,
        "europe": {"lamin": 35.0, "lomin": -15.0, "lamax": 60.0, "lomax": 40.0},
        "north_america": {"lamin": 25.0, "lomin": -130.0, "lamax": 50.0, "lomax": -60.0},
        "asia": {"lamin": 10.0, "lomin": 60.0, "lamax": 50.0, "lomax": 150.0}
    }

    data = get_states(bounds.get(region))
    
    if not data or 'states' not in data or not data['states']:
        return (
            m._repr_html_(), 
            create_monitoring_dashboard([]),
            "No data available. Please try again later."
        )

    states = data['states']
    heat_data = []

    # Add aircraft markers
    for state in states:
        if state[6] and state[5]:  # latitude and longitude check
            lat, lon = state[6], state[5]
            callsign = state[1] if state[1] else 'N/A'
            altitude = state[7] if state[7] else 'N/A'
            velocity = state[9] if state[9] else 'N/A'
            
            heat_data.append([lat, lon, 1])
            
            popup_content = f"""
            <div style="font-family: Arial; width: 200px;">
                <h4 style="color: #4a90e2;">Flight Information</h4>
                <p><b>Callsign:</b> {callsign}</p>
                <p><b>Altitude:</b> {altitude}m</p>
                <p><b>Velocity:</b> {velocity}m/s</p>
                <p><b>Origin:</b> {state[2]}</p>
            </div>
            """
            
            folium.Marker(
                location=[lat, lon],
                popup=folium.Popup(popup_content, max_width=300),
                icon=folium.DivIcon(
                    html=f'''
                        <div style="transform: rotate({state[10] if state[10] else 0}deg)">✈️</div>
                    ''',
                    icon_size=(20, 20)
                )
            ).add_to(m)

    # Add heatmap
    plugins.HeatMap(heat_data, radius=15).add_to(m)
    
    # Statistics
    total_aircraft = len(states)
    countries = len(set(state[2] for state in states if state[2]))
    avg_altitude = np.mean([state[7] for state in states if state[7]]) if states else 0
    
    stats = f"""
    📊 Real-time Statistics:
    • Total Aircraft: {total_aircraft}
    • Countries: {countries}
    • Average Altitude: {avg_altitude:.0f}m
    
    🔄 Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
    """

    return m._repr_html_(), create_monitoring_dashboard(states), stats

# Custom CSS
custom_css = """
.gradio-container {
    background: linear-gradient(135deg, #1a1a1a, #2d2d2d) !important;
}
.gr-button {
    background: linear-gradient(135deg, #4a90e2, #357abd) !important;
    border: none !important;
    color: white !important;
}
.gr-button:hover {
    background: linear-gradient(135deg, #357abd, #4a90e2) !important;
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(74, 144, 226, 0.4) !important;
}
"""

# Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.HTML(
        """
        <h1 style="text-align: center; color: white;">🛩️ Global Aircraft Tracker</h1>
        <p style="text-align: center; color: #ccc;">Real-time tracking of aircraft worldwide</p>
        """
    )
    gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fimmunobiotech-opensky.hf.space">
               <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fimmunobiotech-opensky.hf.space&countColor=%23263759" />
               </a>""")        
    
    with gr.Row():
        region_select = gr.Dropdown(
            choices=["world", "europe", "north_america", "asia"],
            value="world",
            label="Select Region"
        )
        refresh_btn = gr.Button("🔄 Refresh")
    
    map_html = gr.HTML()
    stats_text = gr.Textbox(label="Statistics", lines=6)
    dashboard_plot = gr.Plot(label="Monitoring Dashboard")
    
    def update_map(region):
        try:
            return create_map(region)
        except Exception as e:
            print(f"Error updating map: {e}")
            return (
                "<p>Map loading failed. Please try again.</p>",
                go.Figure(),
                f"Error: {str(e)}"
            )
    
    refresh_btn.click(
        fn=update_map,
        inputs=[region_select],
        outputs=[map_html, dashboard_plot, stats_text]
    )
    
    region_select.change(
        fn=update_map,
        inputs=[region_select],
        outputs=[map_html, dashboard_plot, stats_text]
    )

# Launch with specific configurations
demo.launch(
    show_error=True,
    server_name="0.0.0.0",
    server_port=7860,
    share=False
)