Spaces:
Build error
Build error
import argparse | |
import cv2 | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
import torch | |
from basicsr.archs.ddcolor_arch import DDColor | |
import torch.nn.functional as F | |
class ImageColorizationPipeline(object): | |
def __init__(self, model_path, input_size=256, model_size='large'): | |
self.input_size = input_size | |
if torch.cuda.is_available(): | |
self.device = torch.device('cuda') | |
else: | |
self.device = torch.device('cpu') | |
if model_size == 'tiny': | |
self.encoder_name = 'convnext-t' | |
else: | |
self.encoder_name = 'convnext-l' | |
self.decoder_type = "MultiScaleColorDecoder" | |
if self.decoder_type == 'MultiScaleColorDecoder': | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='MultiScaleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=100, | |
num_scales=3, | |
dec_layers=9, | |
).to(self.device) | |
else: | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='SingleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=256, | |
).to(self.device) | |
self.model.load_state_dict( | |
torch.load(model_path, map_location=torch.device('cpu'))['params'], | |
strict=False) | |
self.model.eval() | |
def process(self, img): | |
self.height, self.width = img.shape[:2] | |
# print(self.width, self.height) | |
# if self.width * self.height < 100000: | |
# self.input_size = 256 | |
img = (img / 255.0).astype(np.float32) | |
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) | |
# resize rgb image -> lab -> get grey -> rgb | |
img = cv2.resize(img, (self.input_size, self.input_size)) | |
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] | |
img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) | |
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) | |
tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) | |
output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width) | |
# resize ab -> concat original l -> rgb | |
output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) | |
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) | |
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) | |
output_img = (output_bgr * 255.0).round().astype(np.uint8) | |
return output_img | |
colorizer = ImageColorizationPipeline(model_path='/content/DDColor/models/pytorch_model.pt', input_size=512) | |
from PIL import Image | |
import gradio as gr | |
import subprocess | |
import shutil, os | |
from gradio_imageslider import ImageSlider | |
def generate(image): | |
image_in = cv2.imread(image) | |
image_out = colorizer.process(image_in) | |
cv2.imwrite('/content/DDColor/out.jpg', image_out) | |
image_in_pil = Image.fromarray(cv2.cvtColor(image_in, cv2.COLOR_BGR2RGB)) | |
image_out_pil = Image.fromarray(cv2.cvtColor(image_out, cv2.COLOR_BGR2RGB)) | |
return (image_in_pil, image_out_pil) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type='filepath') | |
button = gr.Button() | |
output_image = ImageSlider(show_label=False, type="filepath", interactive=False) | |
button.click(fn=generate, inputs=[image], outputs=[output_image]) | |
demo.queue().launch(inline=False, debug=True) |