Spaces:
Build error
Build error
import argparse | |
import cv2 | |
import numpy as np | |
import os | |
from tqdm import tqdm | |
import torch | |
from basicsr.archs.ddcolor_arch import DDColor | |
import torch.nn.functional as F | |
class ImageColorizationPipeline(object): | |
def __init__(self, model_path, input_size=256, model_size='large'): | |
self.input_size = input_size | |
if torch.cuda.is_available(): | |
self.device = torch.device('cuda') | |
else: | |
self.device = torch.device('cpu') | |
if model_size == 'tiny': | |
self.encoder_name = 'convnext-t' | |
else: | |
self.encoder_name = 'convnext-l' | |
self.decoder_type = "MultiScaleColorDecoder" | |
if self.decoder_type == 'MultiScaleColorDecoder': | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='MultiScaleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=100, | |
num_scales=3, | |
dec_layers=9, | |
).to(self.device) | |
else: | |
self.model = DDColor( | |
encoder_name=self.encoder_name, | |
decoder_name='SingleColorDecoder', | |
input_size=[self.input_size, self.input_size], | |
num_output_channels=2, | |
last_norm='Spectral', | |
do_normalize=False, | |
num_queries=256, | |
).to(self.device) | |
self.model.load_state_dict( | |
torch.load(model_path, map_location=torch.device('cpu'))['params'], | |
strict=False) | |
self.model.eval() | |
def process(self, img): | |
self.height, self.width = img.shape[:2] | |
# print(self.width, self.height) | |
# if self.width * self.height < 100000: | |
# self.input_size = 256 | |
img = (img / 255.0).astype(np.float32) | |
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) | |
# resize rgb image -> lab -> get grey -> rgb | |
img = cv2.resize(img, (self.input_size, self.input_size)) | |
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] | |
img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) | |
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) | |
tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) | |
output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width) | |
# resize ab -> concat original l -> rgb | |
output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) | |
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) | |
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) | |
output_img = (output_bgr * 255.0).round().astype(np.uint8) | |
return output_img | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth') | |
parser.add_argument('--input', type=str, default='figure/', help='input test image folder or video path') | |
parser.add_argument('--output', type=str, default='results', help='output folder or video path') | |
parser.add_argument('--input_size', type=int, default=512, help='input size for model') | |
parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size') | |
args = parser.parse_args() | |
print(f'Output path: {args.output}') | |
os.makedirs(args.output, exist_ok=True) | |
img_list = os.listdir(args.input) | |
assert len(img_list) > 0 | |
colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size) | |
for name in tqdm(img_list): | |
img = cv2.imread(os.path.join(args.input, name)) | |
image_out = colorizer.process(img) | |
cv2.imwrite(os.path.join(args.output, name), image_out) | |
if __name__ == '__main__': | |
main() | |