imseldrith's picture
Create app.py
ea86464
raw
history blame
1.75 kB
import nltk
import re
import pandas as pd
from nltk.corpus import stopwords
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Load the required NLTK corpora
nltk.download("vader_lexicon")
nltk.download("stopwords")
# Initialize the SentimentIntensityAnalyzer
sia = SentimentIntensityAnalyzer()
# Define a function to clean the text
def clean_text(text):
text = re.sub("[^a-zA-Z]", " ", text)
text = text.lower()
text = text.split()
text = [word for word in text if word not in set(stopwords.words("english"))]
text = " ".join(text)
return text
# Define a function to calculate the sentiment score
def sentiment_score(text):
score = sia.polarity_scores(text)
return score["compound"]
# Read the data into a pandas DataFrame
df = pd.read_csv("content.csv")
# Clean the text and calculate the sentiment score
df["Clean_Text"] = df["Content"].apply(lambda x: clean_text(x))
df["Sentiment_Score"] = df["Clean_Text"].apply(lambda x: sentiment_score(x))
# Classify the content quality based on the sentiment score
df["Content_Quality"] = df["Sentiment_Score"].apply(lambda x: "Good" if x >= 0.5 else "Bad")
# Print the final result
print(df)
from flask import Flask, request, render_template
app = Flask(__name__)
@app.route("/", methods=["GET", "POST"])
def index():
if request.method == "POST":
content = request.form["content"]
clean_text = clean_text(content)
sentiment_score = sentiment_score(clean_text)
content_quality = "Good" if sentiment_score >= 0.5 else "Bad"
return render_template("index.html", content_quality=content_quality)
return render_template("index.html")
if __name__ == "__main__":
app.run(host="0.0.0.0",port=7860,debug=True)