from flask import Flask, request, render_template import nltk import requests from bs4 import BeautifulSoup nltk.download('punkt') nltk.download('averaged_perceptron_tagger') app = Flask(__name__) @app.route("/", methods=["GET", "POST"]) def home(): if request.method == "POST": url = request.form["url"] html = requests.get(url).content soup = BeautifulSoup(html, "html.parser") text = soup.get_text() # Use nltk to perform NLP analysis on the text tokens = nltk.word_tokenize(text) tagged = nltk.pos_tag(tokens) # Check for the presence of certain POS tags to determine content quality content_quality = "High Quality" for word, pos in tagged: if pos in ["CC", "DT", "IN", "MD", "PRP", "PRP$", "TO"]: content_quality = "Low Quality" break return render_template("result.html", quality=content_quality) return render_template("home.html") if __name__ == "__main__": app.run(host="0.0.0.0",port=7860,debug=True)