Spaces:
Runtime error
Runtime error
File size: 40,094 Bytes
e4daf0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks, Depends, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.templating import Jinja2Templates # For serving HTML
from pydantic import BaseModel, Field
from typing import List, Dict, Optional, Union
import cv2 # OpenCV for video processing
import uuid # For generating unique filenames
import os # For interacting with the file system
import requests # For making HTTP requests
import random
import string
import json
import shutil # For file operations
import ast # For safely evaluating string literals
import tempfile # For creating temporary directories/files
import asyncio # For concurrent operations
import time # For retries and delays
import logging # For structured logging
# --- Application Setup ---
app = FastAPI(title="Advanced NSFW Video Detector API", version="1.1.0") # Updated version
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Templates for HTML Homepage ---
# Create a 'templates' directory in the same location as your main.py
# and put an 'index.html' file inside it.
# For Hugging Face Spaces, you might need to adjust path or ensure the templates dir is included.
# For simplicity here, I'll embed the HTML string directly if Jinja2 setup is complex for the environment.
# However, using Jinja2 is cleaner. Let's assume a 'templates' directory.
# If 'templates' dir doesn't exist, it will fall back to a basic HTML string.
try:
templates_path = os.path.join(os.path.dirname(__file__), "templates")
if not os.path.exists(templates_path):
os.makedirs(templates_path) # Create if not exists for local dev
templates = Jinja2Templates(directory=templates_path)
# Create a dummy index.html if it doesn't exist for local testing
dummy_html_path = os.path.join(templates_path, "index.html")
if not os.path.exists(dummy_html_path):
with open(dummy_html_path, "w") as f:
f.write("<h1>Dummy Index Page - Replace with actual instructions</h1>")
except Exception as e:
logger.warning(f"Jinja2Templates initialization failed: {e}. Will use basic HTML string for homepage.")
templates = None
# --- Configuration (Potentially from environment variables or a settings file) ---
DEFAULT_REQUEST_TIMEOUT = 20 # Increased timeout for individual NSFW checker requests
MAX_RETRY_ATTEMPTS = 3
RETRY_BACKOFF_FACTOR = 2 # In seconds
# --- NSFW Checker URLs (Ideally, these would be in a config) ---
NSFW_CHECKER_CONFIG = {
"checker1_yoinked": {
"queue_join_url": "https://yoinked-da-nsfw-checker.hf.space/queue/join",
"queue_data_url_template": "https://yoinked-da-nsfw-checker.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}, "chen-convnext", 0.5, True, True],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 12
}
},
"checker2_jamescookjr90": {
"queue_join_url": "https://jamescookjr90-falconsai-nsfw-image-detection.hf.space/queue/join",
"queue_data_url_template": "https://jamescookjr90-falconsai-nsfw-image-detection.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 9
}
},
"checker3_zanderlewis": {
"predict_url": "https://zanderlewis-xl-nsfw-detection.hf.space/call/predict",
"event_url_template": "https://zanderlewis-xl-nsfw-detection.hf.space/call/predict/{event_id}",
"payload_template": lambda img_url: {'data': [{'path': img_url}]}
},
"checker4_error466": {
"base_url": "https://error466-falconsai-nsfw-image-detection.hf.space",
"replica_code_needed": True,
"queue_join_url_template": "https://error466-falconsai-nsfw-image-detection.hf.space/--replicas/{code}/queue/join",
"queue_data_url_template": "https://error466-falconsai-nsfw-image-detection.hf.space/--replicas/{code}/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 58
}
},
"checker5_phelpsgg": {
"queue_join_url": "https://phelpsgg-falconsai-nsfw-image-detection.hf.space/queue/join",
"queue_data_url_template": "https://phelpsgg-falconsai-nsfw-image-detection.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 9
}
}
}
# --- Task Management for Asynchronous Processing ---
tasks_db: Dict[str, Dict] = {}
# --- Helper Functions ---
async def http_request_with_retry(method: str, url: str, **kwargs) -> Optional[requests.Response]:
"""Makes an HTTP request with retries, exponential backoff, and jitter."""
headers = kwargs.pop("headers", {})
headers.setdefault("User-Agent", "NSFWDetectorClient/1.1")
for attempt in range(MAX_RETRY_ATTEMPTS):
try:
async with asyncio.Semaphore(10):
loop = asyncio.get_event_loop()
# For requests library, which is synchronous
response = await loop.run_in_executor(
None,
lambda: requests.request(method, url, headers=headers, timeout=DEFAULT_REQUEST_TIMEOUT, **kwargs)
)
response.raise_for_status()
return response
except requests.exceptions.Timeout:
logger.warning(f"Request timeout for {url} on attempt {attempt + 1}")
except requests.exceptions.HTTPError as e:
if e.response is not None and e.response.status_code in [429, 502, 503, 504]:
logger.warning(f"HTTP error {e.response.status_code} for {url} on attempt {attempt + 1}")
else:
logger.error(f"Non-retriable HTTP error for {url}: {e}")
return e.response if e.response is not None else None
except requests.exceptions.RequestException as e:
logger.error(f"Request exception for {url} on attempt {attempt + 1}: {e}")
if attempt < MAX_RETRY_ATTEMPTS - 1:
delay = (RETRY_BACKOFF_FACTOR ** attempt) + random.uniform(0, 0.5)
logger.info(f"Retrying {url} in {delay:.2f} seconds...")
await asyncio.sleep(delay)
logger.error(f"All {MAX_RETRY_ATTEMPTS} retry attempts failed for {url}.")
return None
def get_replica_code_sync(url: str) -> Optional[str]:
try:
r = requests.get(url, timeout=DEFAULT_REQUEST_TIMEOUT, headers={"User-Agent": "NSFWDetectorClient/1.1"})
r.raise_for_status()
# This parsing is fragile
parts = r.text.split('replicas/')
if len(parts) > 1:
return parts[1].split('"};')[0]
logger.warning(f"Could not find 'replicas/' in content from {url}")
return None
except (requests.exceptions.RequestException, IndexError, KeyError) as e:
logger.error(f"Error getting replica code for {url}: {e}")
return None
async def get_replica_code(url: str) -> Optional[str]:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, get_replica_code_sync, url)
async def parse_hf_queue_response(response_content: str) -> Optional[str]:
try:
messages = response_content.strip().split('\n')
for msg_str in reversed(messages):
if msg_str.startswith("data:"):
try:
data_json_str = msg_str[len("data:"):].strip()
if not data_json_str: continue
parsed_json = json.loads(data_json_str)
if parsed_json.get("msg") == "process_completed":
output_data = parsed_json.get("output", {}).get("data")
if output_data and isinstance(output_data, list) and len(output_data) > 0:
first_item = output_data[0]
if isinstance(first_item, dict): return first_item.get('label')
if isinstance(first_item, str): return first_item
logger.warning(f"Unexpected 'process_completed' data structure: {output_data}")
return None
except json.JSONDecodeError:
logger.debug(f"Failed to decode JSON from part of HF stream: {data_json_str[:100]}")
continue
return None
except Exception as e:
logger.error(f"Error parsing HF queue response: {e}, content: {response_content[:200]}")
return None
async def check_nsfw_single_generic(checker_name: str, img_url: str) -> Optional[str]:
config = NSFW_CHECKER_CONFIG.get(checker_name)
if not config:
logger.error(f"No configuration found for checker: {checker_name}")
return None
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(10))
try:
if "predict_url" in config: # ZanderLewis-like
payload = config["payload_template"](img_url)
response_predict = await http_request_with_retry("POST", config["predict_url"], json=payload)
if not response_predict or response_predict.status_code != 200:
logger.error(f"{checker_name} predict call failed or returned non-200. Status: {response_predict.status_code if response_predict else 'N/A'}")
return None
json_data = response_predict.json()
event_id = json_data.get('event_id')
if not event_id:
logger.error(f"{checker_name} did not return event_id.")
return None
event_url = config["event_url_template"].format(event_id=event_id)
for _ in range(10):
await asyncio.sleep(random.uniform(1.5, 2.5)) # Randomized poll delay
response_event = await http_request_with_retry("GET", event_url, stream=True) # stream=True might not be needed if not chunking
if response_event and response_event.status_code == 200:
event_stream_content = response_event.text # Get full text
if 'data:' in event_stream_content:
final_data_str = event_stream_content.strip().split('data:')[-1].strip()
if final_data_str:
try:
parsed_list = ast.literal_eval(final_data_str)
if isinstance(parsed_list, list) and parsed_list:
return parsed_list[0].get('label')
logger.warning(f"{checker_name} parsed empty or invalid list from event stream: {final_data_str[:100]}")
except (SyntaxError, ValueError, IndexError, TypeError) as e:
logger.warning(f"{checker_name} error parsing event stream: {e}, stream: {final_data_str[:100]}")
elif response_event:
logger.warning(f"{checker_name} polling event_url returned status {response_event.status_code}")
else:
logger.warning(f"{checker_name} polling event_url got no response.")
else: # Queue-based APIs
join_url = config["queue_join_url"]
data_url_template = config["queue_data_url_template"]
if config.get("replica_code_needed"):
replica_base_url = config.get("base_url")
if not replica_base_url:
logger.error(f"{checker_name} needs replica_code but base_url is missing.")
return None
code = await get_replica_code(replica_base_url)
if not code:
logger.error(f"Failed to get replica code for {checker_name}")
return None
join_url = config["queue_join_url_template"].format(code=code)
data_url = data_url_template.format(code=code, session_hash=session_hash)
else:
data_url = data_url_template.format(session_hash=session_hash)
payload = config["payload_template"](img_url, session_hash)
response_join = await http_request_with_retry("POST", join_url, json=payload)
if not response_join or response_join.status_code != 200:
logger.error(f"{checker_name} queue/join call failed. Status: {response_join.status_code if response_join else 'N/A'}")
return None
for _ in range(15):
await asyncio.sleep(random.uniform(1.5, 2.5)) # Randomized poll delay
response_data = await http_request_with_retry("GET", data_url, stream=True) # stream=True is important here
if response_data and response_data.status_code == 200:
buffer = ""
for content_chunk in response_data.iter_content(chunk_size=1024, decode_unicode=True): # decode_unicode
if content_chunk:
buffer += content_chunk
if buffer.strip().endswith("}\n\n"): # Check for complete message block
label = await parse_hf_queue_response(buffer)
if label: return label
buffer = "" # Reset buffer after processing a block
elif response_data:
logger.warning(f"{checker_name} polling queue/data returned status {response_data.status_code}")
else:
logger.warning(f"{checker_name} polling queue/data got no response.")
logger.warning(f"{checker_name} failed to get a conclusive result for {img_url}")
return None
except Exception as e:
logger.error(f"Exception in {checker_name} for {img_url}: {e}", exc_info=True)
return None
async def check_nsfw_final_concurrent(img_url: str) -> Optional[bool]:
logger.info(f"Starting NSFW check for: {img_url}")
checker_names = [
"checker2_jamescookjr90", "checker3_zanderlewis", "checker5_phelpsgg",
"checker4_error466", "checker1_yoinked"
]
# Wrap tasks to carry their names for better logging upon completion
named_tasks = {
name: asyncio.create_task(check_nsfw_single_generic(name, img_url))
for name in checker_names
}
# To store if any SFW result was found
sfw_found_by_any_checker = False
for task_name in named_tasks: # Iterate in defined order for potential preference
try:
label = await named_tasks[task_name] # Wait for this specific task
logger.info(f"Checker '{task_name}' result for {img_url}: {label}")
if label:
label_lower = label.lower()
if 'nsfw' in label_lower:
logger.info(f"NSFW detected by '{task_name}' for {img_url}. Final: True.")
# Optionally cancel other tasks if desired:
# for t_name, t_obj in named_tasks.items():
# if t_name != task_name and not t_obj.done(): t_obj.cancel()
return True
if 'sfw' in label_lower or 'safe' in label_lower:
sfw_found_by_any_checker = True
# Don't return False yet, wait for other checkers.
# If label is None or not nsfw/sfw, continue to next checker's result
except asyncio.CancelledError:
logger.info(f"Checker '{task_name}' was cancelled for {img_url}.")
except Exception as e:
logger.error(f"Error processing result from checker '{task_name}' for {img_url}: {e}")
if sfw_found_by_any_checker: # No NSFW detected by any, but at least one said SFW
logger.info(f"SFW confirmed for {img_url} (no NSFW detected, at least one SFW). Final: False.")
return False
logger.warning(f"All NSFW checkers inconclusive or failed for {img_url}. Final: None.")
return None
# --- Video Processing Logic ---
BASE_FRAMES_DIR = "/tmp/video_frames_service_advanced_v2"
os.makedirs(BASE_FRAMES_DIR, exist_ok=True)
app.mount("/static_frames", StaticFiles(directory=BASE_FRAMES_DIR), name="static_frames")
def extract_frames_sync(video_path, num_frames_to_extract, request_specific_frames_dir):
vidcap = cv2.VideoCapture(video_path)
if not vidcap.isOpened():
logger.error(f"Cannot open video file: {video_path}")
return []
total_frames_in_video = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
extracted_frame_paths = []
if total_frames_in_video == 0:
logger.warning(f"Video {video_path} has no frames.")
vidcap.release()
return []
# Ensure num_frames_to_extract does not exceed total_frames_in_video if total_frames_in_video is small
actual_frames_to_extract = min(num_frames_to_extract, total_frames_in_video)
if actual_frames_to_extract == 0 and total_frames_in_video > 0: # Edge case: if num_frames is 0 but video has frames
actual_frames_to_extract = 1 # Extract at least one frame if possible
if actual_frames_to_extract == 0: # If still zero (e.g. total_frames_in_video was 0)
vidcap.release()
return []
for i in range(actual_frames_to_extract):
# Distribute frame extraction
frame_number = int(i * total_frames_in_video / actual_frames_to_extract) if actual_frames_to_extract > 0 else 0
# Ensure frame_number is within bounds
frame_number = min(frame_number, total_frames_in_video -1)
vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
success, image = vidcap.read()
if success:
frame_filename = os.path.join(request_specific_frames_dir, f"frame_{uuid.uuid4().hex}.jpg")
if cv2.imwrite(frame_filename, image):
extracted_frame_paths.append(frame_filename)
else:
logger.error(f"Failed to write frame: {frame_filename}")
else:
logger.warning(f"Failed to read frame at position {frame_number} from {video_path}. Total frames: {total_frames_in_video}")
# Don't break immediately, try next calculated frame unless it's a persistent issue
vidcap.release()
return extracted_frame_paths
async def process_video_core(task_id: str, video_path_on_disk: str, num_frames_to_analyze: int, app_base_url: str):
tasks_db[task_id].update({"status": "processing", "message": "Extracting frames..."})
request_frames_subdir = os.path.join(BASE_FRAMES_DIR, task_id)
os.makedirs(request_frames_subdir, exist_ok=True)
extracted_frames_disk_paths = []
try:
loop = asyncio.get_event_loop()
extracted_frames_disk_paths = await loop.run_in_executor(
None, extract_frames_sync, video_path_on_disk, num_frames_to_analyze, request_frames_subdir
)
if not extracted_frames_disk_paths:
tasks_db[task_id].update({"status": "failed", "message": "No frames could be extracted."})
logger.error(f"Task {task_id}: No frames extracted from {video_path_on_disk}")
# Clean up the video file if no frames extracted
if os.path.exists(video_path_on_disk): os.remove(video_path_on_disk)
return
tasks_db[task_id].update({
"status": "processing",
"message": f"Analyzing {len(extracted_frames_disk_paths)} frames..."
})
nsfw_count = 0
frame_results_list = []
base_url_for_static_frames = f"{app_base_url.rstrip('/')}/static_frames/{task_id}"
analysis_coroutines = []
for frame_disk_path in extracted_frames_disk_paths:
frame_filename_only = os.path.basename(frame_disk_path)
img_http_url = f"{base_url_for_static_frames}/{frame_filename_only}"
analysis_coroutines.append(check_nsfw_final_concurrent(img_http_url))
nsfw_detection_results = await asyncio.gather(*analysis_coroutines, return_exceptions=True)
for i, detection_result in enumerate(nsfw_detection_results):
frame_disk_path = extracted_frames_disk_paths[i]
frame_filename_only = os.path.basename(frame_disk_path)
img_http_url = f"{base_url_for_static_frames}/{frame_filename_only}"
is_nsfw_str = "unknown"
if isinstance(detection_result, Exception):
logger.error(f"Task {task_id}: Error analyzing frame {img_http_url}: {detection_result}")
is_nsfw_str = "error"
else: # detection_result is True, False, or None
if detection_result is True:
nsfw_count += 1
is_nsfw_str = "true"
elif detection_result is False:
is_nsfw_str = "false"
frame_results_list.append({"frame_url": img_http_url, "nsfw_detected": is_nsfw_str})
result_summary = {
"nsfw_count": nsfw_count,
"total_frames_analyzed": len(extracted_frames_disk_paths),
"frames": frame_results_list
}
tasks_db[task_id].update({"status": "completed", "result": result_summary, "message": "Processing complete."})
logger.info(f"Task {task_id}: Processing complete. Result: {result_summary}")
except Exception as e:
logger.error(f"Task {task_id}: Unhandled exception in process_video_core: {e}", exc_info=True)
tasks_db[task_id].update({"status": "failed", "message": f"An internal error occurred: {str(e)}"})
finally:
if os.path.exists(video_path_on_disk):
try:
os.remove(video_path_on_disk)
logger.info(f"Task {task_id}: Cleaned up video file: {video_path_on_disk}")
except OSError as e_remove:
logger.error(f"Task {task_id}: Error cleaning up video file {video_path_on_disk}: {e_remove}")
# Consider a separate job for cleaning up frame directories (request_frames_subdir) after a TTL
# --- API Request/Response Models ---
class VideoProcessRequest(BaseModel):
video_url: Optional[str] = Field(None, description="Publicly accessible URL of the video to process.")
num_frames: int = Field(10, gt=0, le=50, description="Number of frames to extract (1-50). Max 50 for performance.") # Reduced max
app_base_url: str = Field(..., description="Public base URL of this API service (e.g., https://your-username-your-space-name.hf.space).")
class TaskCreationResponse(BaseModel):
task_id: str
status_url: str
message: str
class FrameResult(BaseModel):
frame_url: str
nsfw_detected: str
class VideoProcessResult(BaseModel):
nsfw_count: int
total_frames_analyzed: int
frames: List[FrameResult]
class TaskStatusResponse(BaseModel):
task_id: str
status: str
message: Optional[str] = None
result: Optional[VideoProcessResult] = None
# --- API Endpoints ---
@app.post("/process_video_async", response_model=TaskCreationResponse, status_code=202)
async def process_video_from_url_async_endpoint(
request_data: VideoProcessRequest, # Changed from 'request' to avoid conflict with FastAPI's Request object
background_tasks: BackgroundTasks
):
if not request_data.video_url:
raise HTTPException(status_code=400, detail="video_url must be provided.")
task_id = str(uuid.uuid4())
tasks_db[task_id] = {"status": "pending", "message": "Task received, preparing for download."}
temp_video_file_path = None
try:
# Create a temporary file path for the downloaded video
# The actual download will also be part of the background task to avoid blocking.
# For now, keeping initial download here for simplicity of passing path.
# A more robust way: background_tasks.add_task(download_and_then_process, task_id, request_data.video_url, ...)
# Using a temporary directory specific to this task for the downloaded video
task_download_dir = os.path.join(BASE_FRAMES_DIR, "_video_downloads", task_id)
os.makedirs(task_download_dir, exist_ok=True)
# Suffix from URL or default
video_suffix = os.path.splitext(request_data.video_url.split("?")[0])[-1] or ".mp4" # Basic suffix extraction
if not video_suffix.startswith("."): video_suffix = "." + video_suffix
temp_video_file_path = os.path.join(task_download_dir, f"downloaded_video{video_suffix}")
logger.info(f"Task {task_id}: Attempting to download video from {request_data.video_url} to {temp_video_file_path}")
dl_response = await http_request_with_retry("GET", request_data.video_url, stream=True)
if not dl_response or dl_response.status_code != 200:
if os.path.exists(task_download_dir): shutil.rmtree(task_download_dir)
tasks_db[task_id].update({"status": "failed", "message": f"Failed to download video. Status: {dl_response.status_code if dl_response else 'N/A'}"})
raise HTTPException(status_code=400, detail=f"Error downloading video: Status {dl_response.status_code if dl_response else 'N/A'}")
with open(temp_video_file_path, "wb") as f:
for chunk in dl_response.iter_content(chunk_size=8192*4): # Increased chunk size
f.write(chunk)
logger.info(f"Task {task_id}: Video downloaded to {temp_video_file_path}")
background_tasks.add_task(process_video_core, task_id, temp_video_file_path, request_data.num_frames, request_data.app_base_url)
status_url_path = app.url_path_for("get_task_status_endpoint", task_id=task_id)
full_status_url = str(request_data.app_base_url.rstrip('/') + status_url_path)
return TaskCreationResponse(
task_id=task_id,
status_url=full_status_url,
message="Video processing task accepted and started in background."
)
except requests.exceptions.RequestException as e:
if temp_video_file_path and os.path.exists(os.path.dirname(temp_video_file_path)): shutil.rmtree(os.path.dirname(temp_video_file_path))
tasks_db[task_id].update({"status": "failed", "message": f"Video download error: {e}"})
raise HTTPException(status_code=400, detail=f"Error downloading video: {e}")
except Exception as e:
if temp_video_file_path and os.path.exists(os.path.dirname(temp_video_file_path)): shutil.rmtree(os.path.dirname(temp_video_file_path))
logger.error(f"Task {task_id}: Unexpected error during task submission: {e}", exc_info=True)
tasks_db[task_id].update({"status": "failed", "message": "Internal server error during task submission."})
raise HTTPException(status_code=500, detail="Internal server error during task submission.")
@app.post("/upload_video_async", response_model=TaskCreationResponse, status_code=202)
async def upload_video_async_endpoint(
background_tasks: BackgroundTasks,
app_base_url: str = Form(..., description="Public base URL of this API service."),
num_frames: int = Form(10, gt=0, le=50, description="Number of frames to extract (1-50)."),
video_file: UploadFile = File(..., description="Video file to upload and process.")
):
if not video_file.content_type or not video_file.content_type.startswith("video/"):
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a video.")
task_id = str(uuid.uuid4())
tasks_db[task_id] = {"status": "pending", "message": "Task received, saving uploaded video."}
temp_video_file_path = None
try:
upload_dir = os.path.join(BASE_FRAMES_DIR, "_video_uploads", task_id) # Task-specific upload dir
os.makedirs(upload_dir, exist_ok=True)
suffix = os.path.splitext(video_file.filename)[1] if video_file.filename and "." in video_file.filename else ".mp4"
if not suffix.startswith("."): suffix = "." + suffix
temp_video_file_path = os.path.join(upload_dir, f"uploaded_video{suffix}")
with open(temp_video_file_path, "wb") as buffer:
shutil.copyfileobj(video_file.file, buffer)
logger.info(f"Task {task_id}: Video uploaded and saved to {temp_video_file_path}")
background_tasks.add_task(process_video_core, task_id, temp_video_file_path, num_frames, app_base_url)
status_url_path = app.url_path_for("get_task_status_endpoint", task_id=task_id)
full_status_url = str(app_base_url.rstrip('/') + status_url_path)
return TaskCreationResponse(
task_id=task_id,
status_url=full_status_url,
message="Video upload accepted and processing started in background."
)
except Exception as e:
if temp_video_file_path and os.path.exists(os.path.dirname(temp_video_file_path)): shutil.rmtree(os.path.dirname(temp_video_file_path))
logger.error(f"Task {task_id}: Error handling video upload: {e}", exc_info=True)
tasks_db[task_id].update({"status": "failed", "message": "Internal server error during video upload."})
raise HTTPException(status_code=500, detail=f"Error processing uploaded file: {e}")
finally:
if video_file:
await video_file.close()
@app.get("/tasks/{task_id}/status", response_model=TaskStatusResponse)
async def get_task_status_endpoint(task_id: str):
task = tasks_db.get(task_id)
if not task:
raise HTTPException(status_code=404, detail="Task not found.")
return TaskStatusResponse(task_id=task_id, **task)
# --- Homepage Endpoint ---
@app.get("/", response_class=HTMLResponse)
async def read_root(fastapi_request: Request): # Renamed from 'request' to avoid conflict
# Try to determine app_base_url automatically if possible (might be tricky behind proxies)
# For Hugging Face, the X-Forwarded-Host or similar headers might be useful.
# A simpler approach for HF is to have the user provide it or construct it.
# For the example curl, let's use a placeholder.
# Construct a placeholder app_base_url for examples if running on HF
# This is a guess; ideally, the Space provides this as an env var.
hf_space_name = os.getenv("SPACE_ID", "your-username-your-space-name")
if hf_space_name == "your-username-your-space-name" and fastapi_request.headers.get("host"):
# if host header is like user-space.hf.space, use that
host = fastapi_request.headers.get("host")
if host and ".hf.space" in host:
hf_space_name = host
# If running locally, use localhost
scheme = fastapi_request.url.scheme
port = fastapi_request.url.port
host = fastapi_request.url.hostname
if host == "localhost" or host == "127.0.0.1":
example_app_base_url = f"{scheme}://{host}:{port}" if port else f"{scheme}://{host}"
else: # Assume it's deployed, e.g. on HF
example_app_base_url = f"https://{hf_space_name}.hf.space" if ".hf.space" not in hf_space_name else f"https://{hf_space_name}"
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>NSFW Video Detector API</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 20px; line-height: 1.6; background-color: #f4f4f4; color: #333; }}
.container {{ background-color: #fff; padding: 20px; border-radius: 8px; box-shadow: 0 0 10px rgba(0,0,0,0.1); }}
h1, h2, h3 {{ color: #333; }}
h1 {{ text-align: center; border-bottom: 2px solid #eee; padding-bottom: 10px;}}
h2 {{ border-bottom: 1px solid #eee; padding-bottom: 5px; margin-top: 30px;}}
code {{ background-color: #eef; padding: 2px 6px; border-radius: 4px; font-family: "Courier New", Courier, monospace;}}
pre {{ background-color: #eef; padding: 15px; border-radius: 4px; overflow-x: auto; border: 1px solid #ddd; }}
.endpoint {{ margin-bottom: 20px; }}
.param {{ font-weight: bold; }}
.note {{ background-color: #fff9c4; border-left: 4px solid #fdd835; padding: 10px; margin: 15px 0; border-radius:4px; }}
.tip {{ background-color: #e8f5e9; border-left: 4px solid #4caf50; padding: 10px; margin: 15px 0; border-radius:4px; }}
table {{ width: 100%; border-collapse: collapse; margin-top:10px; }}
th, td {{ text-align: left; padding: 8px; border-bottom: 1px solid #ddd; }}
th {{ background-color: #f0f0f0; }}
a {{ color: #007bff; text-decoration: none; }}
a:hover {{ text-decoration: underline; }}
</style>
</head>
<body>
<div class="container">
<h1>NSFW Video Detector API</h1>
<p>This API allows you to process videos to detect Not Suitable For Work (NSFW) content. It works asynchronously: you submit a video (via URL or direct upload), receive a task ID, and then poll a status endpoint to get the results.</p>
<div class="note">
<p><span class="param">Important:</span> The <code>app_base_url</code> parameter is crucial. It must be the public base URL where this API service is accessible. For example, if your Hugging Face Space URL is <code>https://your-username-your-space-name.hf.space</code>, then that's your <code>app_base_url</code>.</p>
<p>Current detected example base URL for instructions: <code>{example_app_base_url}</code> (This is a guess, please verify your actual public URL).</p>
</div>
<h2>Endpoints</h2>
<div class="endpoint">
<h3>1. Process Video from URL (Asynchronous)</h3>
<p><code>POST /process_video_async</code></p>
<p>Submits a video from a public URL for NSFW analysis.</p>
<h4>Request Body (JSON):</h4>
<table>
<tr><th>Parameter</th><th>Type</th><th>Default</th><th>Description</th></tr>
<tr><td><span class="param">video_url</span></td><td>string</td><td><em>Required</em></td><td>Publicly accessible URL of the video.</td></tr>
<tr><td><span class="param">num_frames</span></td><td>integer</td><td>10</td><td>Number of frames to extract and analyze (1-50).</td></tr>
<tr><td><span class="param">app_base_url</span></td><td>string</td><td><em>Required</em></td><td>The public base URL of this API service.</td></tr>
</table>
<h4>Example using <code>curl</code>:</h4>
<pre><code>curl -X POST "{example_app_base_url}/process_video_async" \\
-H "Content-Type: application/json" \\
-d '{{
"video_url": "YOUR_PUBLIC_VIDEO_URL_HERE.mp4",
"num_frames": 5,
"app_base_url": "{example_app_base_url}"
}}'</code></pre>
</div>
<div class="endpoint">
<h3>2. Upload Video File (Asynchronous)</h3>
<p><code>POST /upload_video_async</code></p>
<p>Uploads a video file directly for NSFW analysis.</p>
<h4>Request Body (Multipart Form-Data):</h4>
<table>
<tr><th>Parameter</th><th>Type</th><th>Default</th><th>Description</th></tr>
<tr><td><span class="param">video_file</span></td><td>file</td><td><em>Required</em></td><td>The video file to upload.</td></tr>
<tr><td><span class="param">num_frames</span></td><td>integer</td><td>10</td><td>Number of frames to extract (1-50).</td></tr>
<tr><td><span class="param">app_base_url</span></td><td>string</td><td><em>Required</em></td><td>The public base URL of this API service.</td></tr>
</table>
<h4>Example using <code>curl</code>:</h4>
<pre><code>curl -X POST "{example_app_base_url}/upload_video_async" \\
-F "video_file=@/path/to/your/video.mp4" \\
-F "num_frames=5" \\
-F "app_base_url={example_app_base_url}"</code></pre>
</div>
<div class="tip">
<h4>Response for Task Creation (for both URL and Upload):</h4>
<p>If successful (HTTP 202 Accepted), the API will respond with:</p>
<pre><code>{{
"task_id": "some-unique-task-id",
"status_url": "{example_app_base_url}/tasks/some-unique-task-id/status",
"message": "Video processing task accepted and started in background."
}}</code></pre>
</div>
<div class="endpoint">
<h3>3. Get Task Status and Result</h3>
<p><code>GET /tasks/<task_id>/status</code></p>
<p>Poll this endpoint to check the status of a processing task and retrieve the result once completed.</p>
<h4>Example using <code>curl</code>:</h4>
<pre><code>curl -X GET "{example_app_base_url}/tasks/some-unique-task-id/status"</code></pre>
<h4>Possible Statuses:</h4>
<ul>
<li><code>pending</code>: Task is queued.</li>
<li><code>processing</code>: Task is actively being processed (downloading, extracting frames, analyzing).</li>
<li><code>completed</code>: Task finished successfully. Results are available in the <code>result</code> field.</li>
<li><code>failed</code>: Task failed. Check the <code>message</code> field for details.</li>
</ul>
<h4>Example Response (Status: <code>completed</code>):</h4>
<pre><code>{{
"task_id": "some-unique-task-id",
"status": "completed",
"message": "Processing complete.",
"result": {{
"nsfw_count": 1,
"total_frames_analyzed": 5,
"frames": [
{{
"frame_url": "{example_app_base_url}/static_frames/some-unique-task-id/frame_uuid1.jpg",
"nsfw_detected": "false"
}},
{{
"frame_url": "{example_app_base_url}/static_frames/some-unique-task-id/frame_uuid2.jpg",
"nsfw_detected": "true"
}}
// ... more frames
]
}}
}}</code></pre>
<h4>Example Response (Status: <code>processing</code>):</h4>
<pre><code>{{
"task_id": "some-unique-task-id",
"status": "processing",
"message": "Analyzing 5 frames...",
"result": null
}}</code></pre>
</div>
<p style="text-align:center; margin-top:30px; font-size:0.9em; color:#777;">API Version: {app.version}</p>
</div>
</body>
</html>
"""
# If using Jinja2 templates:
# if templates:
# return templates.TemplateResponse("index.html", {"request": fastapi_request, "app_version": app.version, "example_app_base_url": example_app_base_url})
# else:
# return HTMLResponse(content=html_content, status_code=200)
return HTMLResponse(content=html_content, status_code=200)
# Example of how to run for local development:
# 1. Ensure you have a 'templates/index.html' file or the fallback HTML will be used.
# 2. Run: uvicorn main:app --reload --host 0.0.0.0 --port 8000
# (assuming your file is named main.py)
# Requirements: fastapi uvicorn[standard] opencv-python requests pydantic python-multipart (for Form/File uploads)
|