Spaces:
Runtime error
Runtime error
File size: 25,578 Bytes
b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 e4daf0b b03b138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import gradio as gr
import cv2 # OpenCV for video processing
import os # For interacting with the file system
import requests # For making HTTP requests
import random
import string
import json
import shutil # For file operations
import ast # For safely evaluating string literals
import uuid # For generating unique filenames
import asyncio # For concurrent operations
import time # For retries and delays
import logging # For structured logging
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Configuration ---
# Directory for temporarily storing extracted frames.
GRADIO_TEMP_FRAME_DIR = "/tmp/gradio_nsfw_frames_advanced"
os.makedirs(GRADIO_TEMP_FRAME_DIR, exist_ok=True)
# The public URL of this Gradio Space. Crucial for external NSFW checkers.
# Set via environment variable or update placeholder if hardcoding.
APP_BASE_URL = os.getenv("APP_BASE_URL", "YOUR_GRADIO_SPACE_PUBLIC_URL_HERE")
DEFAULT_REQUEST_TIMEOUT = 20
MAX_RETRY_ATTEMPTS = 3
RETRY_BACKOFF_FACTOR = 2
# --- NSFW Checker Configuration (from FastAPI version) ---
NSFW_CHECKER_CONFIG = {
"checker1_yoinked": {
"queue_join_url": "https://yoinked-da-nsfw-checker.hf.space/queue/join",
"queue_data_url_template": "https://yoinked-da-nsfw-checker.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}, "chen-convnext", 0.5, True, True],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 12
}
},
"checker2_jamescookjr90": {
"queue_join_url": "https://jamescookjr90-falconsai-nsfw-image-detection.hf.space/queue/join",
"queue_data_url_template": "https://jamescookjr90-falconsai-nsfw-image-detection.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 9
}
},
"checker3_zanderlewis": {
"predict_url": "https://zanderlewis-xl-nsfw-detection.hf.space/call/predict",
"event_url_template": "https://zanderlewis-xl-nsfw-detection.hf.space/call/predict/{event_id}",
"payload_template": lambda img_url: {'data': [{'path': img_url}]}
},
"checker4_error466": {
"base_url": "https://error466-falconsai-nsfw-image-detection.hf.space",
"replica_code_needed": True,
"queue_join_url_template": "https://error466-falconsai-nsfw-image-detection.hf.space/--replicas/{code}/queue/join",
"queue_data_url_template": "https://error466-falconsai-nsfw-image-detection.hf.space/--replicas/{code}/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 58
}
},
"checker5_phelpsgg": { # Original user code had 'imseldrith', FastAPI had 'phelpsgg'. Using phelpsgg from FastAPI.
"queue_join_url": "https://phelpsgg-falconsai-nsfw-image-detection.hf.space/queue/join",
"queue_data_url_template": "https://phelpsgg-falconsai-nsfw-image-detection.hf.space/queue/data?session_hash={session_hash}",
"payload_template": lambda img_url, session_hash: {
'data': [{'path': img_url}],
'session_hash': session_hash, 'fn_index': 0, 'trigger_id': 9
}
}
}
# --- Helper Functions (from FastAPI version, adapted for Gradio context) ---
async def http_request_with_retry(method: str, url: str, **kwargs) -> Optional[requests.Response]:
headers = kwargs.pop("headers", {})
headers.setdefault("User-Agent", "GradioNSFWClient/1.0")
for attempt in range(MAX_RETRY_ATTEMPTS):
try:
async with asyncio.Semaphore(10):
loop = asyncio.get_event_loop()
response = await loop.run_in_executor(
None,
lambda: requests.request(method, url, headers=headers, timeout=DEFAULT_REQUEST_TIMEOUT, **kwargs)
)
response.raise_for_status()
return response
except requests.exceptions.Timeout:
logger.warning(f"Request timeout for {url} on attempt {attempt + 1}")
except requests.exceptions.HTTPError as e:
if e.response is not None and e.response.status_code in [429, 502, 503, 504]:
logger.warning(f"HTTP error {e.response.status_code} for {url} on attempt {attempt + 1}")
else:
logger.error(f"Non-retriable HTTP error for {url}: {e}")
return e.response if e.response is not None else None
except requests.exceptions.RequestException as e:
logger.error(f"Request exception for {url} on attempt {attempt + 1}: {e}")
if attempt < MAX_RETRY_ATTEMPTS - 1:
delay = (RETRY_BACKOFF_FACTOR ** attempt) + random.uniform(0, 0.5)
logger.info(f"Retrying {url} in {delay:.2f} seconds...")
await asyncio.sleep(delay)
logger.error(f"All {MAX_RETRY_ATTEMPTS} retry attempts failed for {url}.")
return None
def get_replica_code_sync(url: str) -> Optional[str]:
try:
r = requests.get(url, timeout=DEFAULT_REQUEST_TIMEOUT, headers={"User-Agent": "GradioNSFWClient/1.0"})
r.raise_for_status()
parts = r.text.split('replicas/')
if len(parts) > 1:
return parts[1].split('"};')[0]
logger.warning(f"Could not find 'replicas/' in content from {url}")
return None
except (requests.exceptions.RequestException, IndexError, KeyError) as e:
logger.error(f"Error getting replica code for {url}: {e}")
return None
async def get_replica_code(url: str) -> Optional[str]:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, get_replica_code_sync, url)
async def parse_hf_queue_response(response_content: str) -> Optional[str]:
try:
messages = response_content.strip().split('\n')
for msg_str in reversed(messages):
if msg_str.startswith("data:"):
try:
data_json_str = msg_str[len("data:"):].strip()
if not data_json_str: continue
parsed_json = json.loads(data_json_str)
if parsed_json.get("msg") == "process_completed":
output_data = parsed_json.get("output", {}).get("data")
if output_data and isinstance(output_data, list) and len(output_data) > 0:
first_item = output_data[0]
if isinstance(first_item, dict): return first_item.get('label')
if isinstance(first_item, str): return first_item
logger.warning(f"Unexpected 'process_completed' data structure: {output_data}")
return None
except json.JSONDecodeError:
logger.debug(f"Failed to decode JSON from part of HF stream: {data_json_str[:100]}")
continue
return None
except Exception as e:
logger.error(f"Error parsing HF queue response: {e}, content: {response_content[:200]}")
return None
async def check_nsfw_single_generic(checker_name: str, img_url: str) -> Optional[str]:
config = NSFW_CHECKER_CONFIG.get(checker_name)
if not config:
logger.error(f"No configuration found for checker: {checker_name}")
return None
session_hash = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range(10))
try:
if "predict_url" in config: # ZanderLewis-like
payload = config["payload_template"](img_url)
response_predict = await http_request_with_retry("POST", config["predict_url"], json=payload)
if not response_predict or response_predict.status_code != 200:
logger.error(f"{checker_name} predict call failed. Status: {response_predict.status_code if response_predict else 'N/A'}")
return None
json_data = response_predict.json()
event_id = json_data.get('event_id')
if not event_id:
logger.error(f"{checker_name} did not return event_id.")
return None
event_url = config["event_url_template"].format(event_id=event_id)
for _ in range(10):
await asyncio.sleep(random.uniform(1.5, 2.5))
response_event = await http_request_with_retry("GET", event_url) # Removed stream=True as iter_content not used directly
if response_event and response_event.status_code == 200:
event_stream_content = response_event.text
if 'data:' in event_stream_content:
final_data_str = event_stream_content.strip().split('data:')[-1].strip()
if final_data_str:
try:
parsed_list = ast.literal_eval(final_data_str)
if isinstance(parsed_list, list) and parsed_list and isinstance(parsed_list[0], dict):
return parsed_list[0].get('label')
logger.warning(f"{checker_name} parsed non-list or empty list from event stream: {final_data_str[:100]}")
except (SyntaxError, ValueError, IndexError, TypeError) as e:
logger.warning(f"{checker_name} error parsing event stream: {e}, stream: {final_data_str[:100]}")
elif response_event:
logger.warning(f"{checker_name} polling event_url returned status {response_event.status_code}")
else:
logger.warning(f"{checker_name} polling event_url got no response.")
else: # Queue-based APIs
join_url = config["queue_join_url"]
data_url_template = config["queue_data_url_template"]
if config.get("replica_code_needed"):
replica_base_url = config.get("base_url")
if not replica_base_url:
logger.error(f"{checker_name} needs replica_code but base_url is missing.")
return None
code = await get_replica_code(replica_base_url)
if not code:
logger.error(f"Failed to get replica code for {checker_name}")
return None
join_url = config["queue_join_url_template"].format(code=code)
data_url = data_url_template.format(code=code, session_hash=session_hash)
else:
data_url = data_url_template.format(session_hash=session_hash)
payload = config["payload_template"](img_url, session_hash)
response_join = await http_request_with_retry("POST", join_url, json=payload)
if not response_join or response_join.status_code != 200:
logger.error(f"{checker_name} queue/join call failed. Status: {response_join.status_code if response_join else 'N/A'}")
return None
for _ in range(15):
await asyncio.sleep(random.uniform(1.5, 2.5))
response_data = await http_request_with_retry("GET", data_url, stream=True)
if response_data and response_data.status_code == 200:
buffer = ""
# iter_content is synchronous, but http_request_with_retry runs it in executor
for content_chunk in response_data.iter_content(chunk_size=1024, decode_unicode=True):
if content_chunk:
buffer += content_chunk
if buffer.strip().endswith("}\n\n"):
label = await parse_hf_queue_response(buffer) # parse_hf_queue_response is async
if label: return label
buffer = ""
elif response_data:
logger.warning(f"{checker_name} polling queue/data returned status {response_data.status_code}")
else:
logger.warning(f"{checker_name} polling queue/data got no response.")
logger.warning(f"{checker_name} failed to get a conclusive result for {img_url}")
return None
except Exception as e:
logger.error(f"Exception in {checker_name} for {img_url}: {e}", exc_info=True)
return None
async def check_nsfw_final_concurrent(img_url: str) -> Optional[bool]:
logger.info(f"Starting NSFW check for: {img_url}")
# Prioritized list from FastAPI version
checker_names = [
"checker2_jamescookjr90", "checker3_zanderlewis", "checker5_phelpsgg",
"checker4_error466", "checker1_yoinked"
]
named_tasks = {
name: asyncio.create_task(check_nsfw_single_generic(name, img_url))
for name in checker_names
}
sfw_found_by_any_checker = False
# Iterate and await tasks. Since as_completed is not used, order of results depends on await order.
# For true "first result wins" or concurrent processing, as_completed or gather is better.
# This simplified loop awaits them one by one based on checker_names order.
for task_name in checker_names:
try:
label = await named_tasks[task_name]
logger.info(f"Checker '{task_name}' result for {img_url}: {label}")
if label:
label_lower = label.lower()
if 'nsfw' in label_lower:
logger.info(f"NSFW detected by '{task_name}' for {img_url}. Final: True.")
# Cancel remaining tasks
for t_name_to_cancel, t_obj_to_cancel in named_tasks.items():
if t_name_to_cancel != task_name and not t_obj_to_cancel.done():
t_obj_to_cancel.cancel()
return True
if 'sfw' in label_lower or 'safe' in label_lower:
sfw_found_by_any_checker = True
except asyncio.CancelledError:
logger.info(f"Checker '{task_name}' was cancelled for {img_url}.")
except Exception as e:
logger.error(f"Error processing result from checker '{task_name}' for {img_url}: {e}")
if sfw_found_by_any_checker:
logger.info(f"SFW confirmed for {img_url} (no NSFW detected by any checker, at least one SFW). Final: False.")
return False
logger.warning(f"All NSFW checkers inconclusive or failed for {img_url}. Final: None.")
return None
# --- Gradio Specific Functions ---
def extract_frames_sync(video_path: str, num_frames_to_extract: int, progress:gr.Progress=None) -> list:
if progress: progress(0, desc="Starting frame extraction...")
vidcap = cv2.VideoCapture(video_path)
if not vidcap.isOpened():
logger.error(f"Error: Cannot open video file {video_path}")
return []
total_frames_in_video = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
extracted_filenames = [] # Stores only filenames, not full paths
if total_frames_in_video == 0:
vidcap.release()
return []
actual_frames_to_extract = min(num_frames_to_extract, total_frames_in_video)
if actual_frames_to_extract == 0 and total_frames_in_video > 0: actual_frames_to_extract = 1
if actual_frames_to_extract == 0:
vidcap.release()
return []
for i in range(actual_frames_to_extract):
if progress: progress(i / actual_frames_to_extract, desc=f"Extracting frame {i+1}/{actual_frames_to_extract}")
frame_number = int(i * total_frames_in_video / actual_frames_to_extract)
frame_number = min(frame_number, total_frames_in_video - 1)
vidcap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
success, image = vidcap.read()
if success:
random_filename = f"{uuid.uuid4().hex}.jpg"
full_frame_path = os.path.join(GRADIO_TEMP_FRAME_DIR, random_filename)
try:
cv2.imwrite(full_frame_path, image)
extracted_filenames.append(random_filename)
except Exception as e:
logger.error(f"Error writing frame {full_frame_path}: {e}")
else:
logger.warning(f"Warning: Failed to read frame at position {frame_number} from {video_path}")
vidcap.release()
if progress: progress(1, desc="Frame extraction complete.")
return extracted_filenames
async def process_video_gradio(video_temp_path: str, num_frames: int, progress=gr.Progress(track_tqdm=True)):
"""
Main async processing function for Gradio, using robust NSFW checkers.
"""
if APP_BASE_URL == "YOUR_GRADIO_SPACE_PUBLIC_URL_HERE":
warning_msg = "CRITICAL WARNING: APP_BASE_URL is not set! External NSFW checks will likely fail. Please set the APP_BASE_URL environment variable to your public Gradio Space URL."
logger.error(warning_msg)
# Optionally, display this warning in the Gradio UI as well
# For now, returning it in the JSON output.
return {"error": warning_msg, "details": "The application needs to know its own public URL to construct frame URLs for external analysis services."}
if not video_temp_path:
return {"error": "No video file provided or video path is invalid."}
try:
num_frames = int(num_frames)
if num_frames <= 0:
return {"error": "Number of frames must be a positive integer."}
except (ValueError, TypeError):
return {"error": "Invalid number for frames."}
# Run synchronous frame extraction in an executor to keep the async event loop unblocked
loop = asyncio.get_event_loop()
extracted_frame_filenames = await loop.run_in_executor(
None, extract_frames_sync, video_temp_path, num_frames, progress
)
if not extracted_frame_filenames:
# Cleanup the uploaded video file if it exists and extraction failed
if os.path.exists(video_temp_path):
try: os.remove(video_temp_path)
except Exception as e: logger.error(f"Error cleaning up input video {video_temp_path} after failed extraction: {e}")
return {"error": "Could not extract any frames from the video."}
nsfw_count = 0
total_frames_processed = len(extracted_frame_filenames)
frame_results_output = []
analysis_coroutines = []
for frame_filename in extracted_frame_filenames:
# Construct the URL for the NSFW checker using Gradio's /file= route
# The path for /file= should be the absolute path on the server where Gradio can find the file.
absolute_frame_path_on_server = os.path.join(GRADIO_TEMP_FRAME_DIR, frame_filename)
publicly_accessible_frame_url = f"{APP_BASE_URL.rstrip('/')}/file={absolute_frame_path_on_server}"
analysis_coroutines.append(check_nsfw_final_concurrent(publicly_accessible_frame_url))
# Update progress for analysis phase
# Since gr.Progress doesn't directly map to asyncio.gather, we'll set a general message.
if progress: progress(0.5, desc=f"Analyzing {total_frames_processed} frames (may take time)...")
nsfw_detection_results = await asyncio.gather(*analysis_coroutines, return_exceptions=True)
# Update progress after analysis
if progress: progress(0.9, desc="Compiling results...")
for i, detection_result in enumerate(nsfw_detection_results):
frame_filename = extracted_frame_filenames[i]
absolute_frame_path_on_server = os.path.join(GRADIO_TEMP_FRAME_DIR, frame_filename)
publicly_accessible_frame_url = f"{APP_BASE_URL.rstrip('/')}/file={absolute_frame_path_on_server}"
is_nsfw_str = "unknown"
if isinstance(detection_result, Exception):
logger.error(f"Error analyzing frame {publicly_accessible_frame_url}: {detection_result}")
is_nsfw_str = "error"
else: # detection_result is True, False, or None
if detection_result is True:
nsfw_count += 1
is_nsfw_str = "true"
elif detection_result is False:
is_nsfw_str = "false"
frame_results_output.append({
"frame_filename_on_server": frame_filename,
"checked_url": publicly_accessible_frame_url,
"nsfw_detected": is_nsfw_str
})
if progress: progress(1, desc="Analysis complete. Cleaning up temporary files...")
# Cleanup extracted frames
for frame_filename in extracted_frame_filenames:
full_frame_path_to_delete = os.path.join(GRADIO_TEMP_FRAME_DIR, frame_filename)
if os.path.exists(full_frame_path_to_delete):
try:
os.remove(full_frame_path_to_delete)
except Exception as e:
logger.error(f"Error deleting frame {full_frame_path_to_delete}: {e}")
# Gradio manages the `video_temp_path` (uploaded video) cleanup.
final_result_json = {
"summary": {
"nsfw_frames_found": nsfw_count,
"total_frames_analyzed": total_frames_processed,
"app_base_url_used_for_checks": APP_BASE_URL,
"frames_temp_dir_on_server": GRADIO_TEMP_FRAME_DIR
},
"frame_details": frame_results_output
}
return final_result_json
# --- Gradio Interface Definition ---
with gr.Blocks(css="footer {display: none !important;}", title="NSFW Video Detector") as app_interface:
gr.Markdown(
f"""
# NSFW Frame Detection in Video
Upload a video and specify the number of frames to check for NSFW content.
The analysis uses a series of external NSFW detection models with retries and concurrent checks for robustness.
"""
)
with gr.Accordion("Important: How this Space Works & Configuration", open=False):
gr.Markdown(
f"""
- **`APP_BASE_URL`**: For this Space to work correctly when deployed (e.g., on Hugging Face Spaces), the `APP_BASE_URL` environment variable **must** be set to its public URL (e.g., `https://your-username-your-spacename.hf.space`). This is because external NSFW checkers need to access the extracted video frames via public URLs.
- **Currently configured `APP_BASE_URL` for frame checking: `{APP_BASE_URL}`**. If this shows the placeholder, the NSFW checks will likely fail.
- **Temporary Frame Storage**: Frames are temporarily extracted to `{GRADIO_TEMP_FRAME_DIR}` on the server and deleted after processing.
- **Processing Time**: Depends on video length, number of frames selected, and the responsiveness of external NSFW checking services. Please be patient.
"""
)
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video")
num_frames_input = gr.Number(label="Number of Frames to Check (e.g., 5-20)", value=10, minimum=1, maximum=50, step=1, precision=0)
submit_button = gr.Button("Detect NSFW Content", variant="primary")
with gr.Column(scale=2):
output_json = gr.JSON(label="Detection Result")
submit_button.click(
fn=process_video_gradio, # Use the new async handler
inputs=[video_input, num_frames_input],
outputs=output_json
)
gr.Examples(
examples=[
# Provide path to a sample video if you have one in your Space repo
# Example: [os.path.join(os.path.dirname(__file__), "sample_video.mp4"), 5],
],
inputs=[video_input, num_frames_input],
outputs=output_json,
fn=process_video_gradio, # Ensure example uses the async handler too
cache_examples=False
)
gr.Markdown("Note: If `APP_BASE_URL` is not correctly set to this Space's public URL, the NSFW detection for frames will fail as external services won't be able to access them.")
if __name__ == "__main__":
if APP_BASE_URL == "YOUR_GRADIO_SPACE_PUBLIC_URL_HERE": # Check placeholder
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print("!!! CRITICAL WARNING: APP_BASE_URL is NOT SET or using a placeholder. !!!")
print("!!! External NSFW checks will likely FAIL. !!!")
print("!!! For local testing: Expose this app (e.g., with ngrok) and set APP_BASE_URL to the ngrok URL. !!!")
print("!!! When deploying to Hugging Face Spaces, set the APP_BASE_URL environment variable in Space settings.!!!")
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
# For Gradio, app.launch() is typically how you start it.
# If running in a Hugging Face Space with a Dockerfile, the CMD usually is `python app.py`.
# Gradio handles the web server part.
app_interface.queue() # Enable queue for handling multiple requests and longer tasks better.
app_interface.launch() # share=True can be used for temporary public link if running locally.
|