Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -41,6 +41,7 @@ def generate_heatmap_image(model_entry):
|
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
|
|
44 |
"""
|
45 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
46 |
# Create a vector with the metrics in the defined order.
|
@@ -50,7 +51,7 @@ def generate_heatmap_image(model_entry):
|
|
50 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
51 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
52 |
|
53 |
-
#
|
54 |
plt.figure(figsize=(4, 4))
|
55 |
sns.heatmap(matrix,
|
56 |
mask=mask,
|
@@ -73,6 +74,8 @@ def generate_heatmap_image(model_entry):
|
|
73 |
|
74 |
# Convert the buffer into a PIL Image
|
75 |
image = Image.open(buf).convert("RGB")
|
|
|
|
|
76 |
return image
|
77 |
|
78 |
def generate_heatmaps(selected_model_names):
|
@@ -81,10 +84,7 @@ def generate_heatmaps(selected_model_names):
|
|
81 |
generate a heatmap for each, and return a list of PIL images.
|
82 |
"""
|
83 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
84 |
-
images = []
|
85 |
-
for entry in filtered_entries:
|
86 |
-
img = generate_heatmap_image(entry)
|
87 |
-
images.append(img)
|
88 |
return images
|
89 |
|
90 |
# -------------------------------
|
@@ -104,13 +104,7 @@ with gr.Blocks() as demo:
|
|
104 |
|
105 |
generate_btn = gr.Button("Generate Heatmaps")
|
106 |
# The 'columns' parameter will display images in a grid with 2 columns.
|
107 |
-
|
108 |
-
gallery = gr.Gallery(
|
109 |
-
label="Heatmaps",
|
110 |
-
columns=2,
|
111 |
-
image_size=(200, 200),
|
112 |
-
object_fit="contain"
|
113 |
-
)
|
114 |
|
115 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
116 |
|
|
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
44 |
+
The image is resized to 300x300 pixels.
|
45 |
"""
|
46 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
47 |
# Create a vector with the metrics in the defined order.
|
|
|
51 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
52 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
53 |
|
54 |
+
# Set a smaller figure size to produce a smaller output image.
|
55 |
plt.figure(figsize=(4, 4))
|
56 |
sns.heatmap(matrix,
|
57 |
mask=mask,
|
|
|
74 |
|
75 |
# Convert the buffer into a PIL Image
|
76 |
image = Image.open(buf).convert("RGB")
|
77 |
+
# Resize the image to a fixed size of 300x300 pixels.
|
78 |
+
image = image.resize((300, 300), Image.LANCZOS)
|
79 |
return image
|
80 |
|
81 |
def generate_heatmaps(selected_model_names):
|
|
|
84 |
generate a heatmap for each, and return a list of PIL images.
|
85 |
"""
|
86 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
87 |
+
images = [generate_heatmap_image(entry) for entry in filtered_entries]
|
|
|
|
|
|
|
88 |
return images
|
89 |
|
90 |
# -------------------------------
|
|
|
104 |
|
105 |
generate_btn = gr.Button("Generate Heatmaps")
|
106 |
# The 'columns' parameter will display images in a grid with 2 columns.
|
107 |
+
gallery = gr.Gallery(label="Heatmaps", columns=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
110 |
|