alielfilali01 commited on
Commit
5e5231b
·
verified ·
1 Parent(s): cdd8617

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -41,6 +41,7 @@ def generate_heatmap_image(model_entry):
41
  """
42
  For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
43
  using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
 
44
  """
45
  scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
46
  # Create a vector with the metrics in the defined order.
@@ -50,7 +51,7 @@ def generate_heatmap_image(model_entry):
50
  # Create a mask for the upper triangle (keeping the diagonal visible).
51
  mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
52
 
53
- # Make the figure itself smaller
54
  plt.figure(figsize=(4, 4))
55
  sns.heatmap(matrix,
56
  mask=mask,
@@ -73,6 +74,8 @@ def generate_heatmap_image(model_entry):
73
 
74
  # Convert the buffer into a PIL Image
75
  image = Image.open(buf).convert("RGB")
 
 
76
  return image
77
 
78
  def generate_heatmaps(selected_model_names):
@@ -81,10 +84,7 @@ def generate_heatmaps(selected_model_names):
81
  generate a heatmap for each, and return a list of PIL images.
82
  """
83
  filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
84
- images = []
85
- for entry in filtered_entries:
86
- img = generate_heatmap_image(entry)
87
- images.append(img)
88
  return images
89
 
90
  # -------------------------------
@@ -104,13 +104,7 @@ with gr.Blocks() as demo:
104
 
105
  generate_btn = gr.Button("Generate Heatmaps")
106
  # The 'columns' parameter will display images in a grid with 2 columns.
107
- # 'image_size=(300, 300)' ensures each image is displayed at 300x300 px.
108
- gallery = gr.Gallery(
109
- label="Heatmaps",
110
- columns=2,
111
- image_size=(200, 200),
112
- object_fit="contain"
113
- )
114
 
115
  generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
116
 
 
41
  """
42
  For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
43
  using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
44
+ The image is resized to 300x300 pixels.
45
  """
46
  scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
47
  # Create a vector with the metrics in the defined order.
 
51
  # Create a mask for the upper triangle (keeping the diagonal visible).
52
  mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
53
 
54
+ # Set a smaller figure size to produce a smaller output image.
55
  plt.figure(figsize=(4, 4))
56
  sns.heatmap(matrix,
57
  mask=mask,
 
74
 
75
  # Convert the buffer into a PIL Image
76
  image = Image.open(buf).convert("RGB")
77
+ # Resize the image to a fixed size of 300x300 pixels.
78
+ image = image.resize((300, 300), Image.LANCZOS)
79
  return image
80
 
81
  def generate_heatmaps(selected_model_names):
 
84
  generate a heatmap for each, and return a list of PIL images.
85
  """
86
  filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
87
+ images = [generate_heatmap_image(entry) for entry in filtered_entries]
 
 
 
88
  return images
89
 
90
  # -------------------------------
 
104
 
105
  generate_btn = gr.Button("Generate Heatmaps")
106
  # The 'columns' parameter will display images in a grid with 2 columns.
107
+ gallery = gr.Gallery(label="Heatmaps", columns=2)
 
 
 
 
 
 
108
 
109
  generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
110