alielfilali01 commited on
Commit
7ce9f0f
·
verified ·
1 Parent(s): 30edace

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -15
app.py CHANGED
@@ -41,7 +41,6 @@ def generate_heatmap_image(model_entry):
41
  """
42
  For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
43
  using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
44
- The image is resized to 300x300 pixels.
45
  """
46
  scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
47
  # Create a vector with the metrics in the defined order.
@@ -51,8 +50,7 @@ def generate_heatmap_image(model_entry):
51
  # Create a mask for the upper triangle (keeping the diagonal visible).
52
  mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
53
 
54
- # Set a smaller figure size to produce a smaller output image.
55
- plt.figure(figsize=(4, 4))
56
  sns.heatmap(matrix,
57
  mask=mask,
58
  annot=True,
@@ -71,11 +69,8 @@ def generate_heatmap_image(model_entry):
71
  plt.savefig(buf, format="png")
72
  plt.close()
73
  buf.seek(0)
74
-
75
- # Convert the buffer into a PIL Image
76
  image = Image.open(buf).convert("RGB")
77
- # Resize the image to a fixed size of 300x300 pixels.
78
- image = image.resize((600, 600), Image.LANCZOS)
79
  return image
80
 
81
  def generate_heatmaps(selected_model_names):
@@ -84,7 +79,10 @@ def generate_heatmaps(selected_model_names):
84
  generate a heatmap for each, and return a list of PIL images.
85
  """
86
  filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
87
- images = [generate_heatmap_image(entry) for entry in filtered_entries]
 
 
 
88
  return images
89
 
90
  # -------------------------------
@@ -95,15 +93,10 @@ with gr.Blocks() as demo:
95
  gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
96
 
97
  with gr.Row():
98
- model_dropdown = gr.Dropdown(
99
- choices=MODEL_NAMES,
100
- label="Select Model(s)",
101
- multiselect=True,
102
- value=MODEL_NAMES[:3]
103
- )
104
 
105
  generate_btn = gr.Button("Generate Heatmaps")
106
- # The 'columns' parameter will display images in a grid with 2 columns.
107
  gallery = gr.Gallery(label="Heatmaps", columns=2)
108
 
109
  generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
 
41
  """
42
  For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
43
  using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
 
44
  """
45
  scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
46
  # Create a vector with the metrics in the defined order.
 
50
  # Create a mask for the upper triangle (keeping the diagonal visible).
51
  mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
52
 
53
+ plt.figure(figsize=(6, 5))
 
54
  sns.heatmap(matrix,
55
  mask=mask,
56
  annot=True,
 
69
  plt.savefig(buf, format="png")
70
  plt.close()
71
  buf.seek(0)
72
+ # Convert the buffer into a PIL Image.
 
73
  image = Image.open(buf).convert("RGB")
 
 
74
  return image
75
 
76
  def generate_heatmaps(selected_model_names):
 
79
  generate a heatmap for each, and return a list of PIL images.
80
  """
81
  filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
82
+ images = []
83
+ for entry in filtered_entries:
84
+ img = generate_heatmap_image(entry)
85
+ images.append(img)
86
  return images
87
 
88
  # -------------------------------
 
93
  gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
94
 
95
  with gr.Row():
96
+ model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
 
 
 
 
 
97
 
98
  generate_btn = gr.Button("Generate Heatmaps")
99
+ # Use the 'columns' parameter to set a grid layout in the gallery.
100
  gallery = gr.Gallery(label="Heatmaps", columns=2)
101
 
102
  generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)