Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -41,7 +41,6 @@ def generate_heatmap_image(model_entry):
|
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
44 |
-
The image is resized to 300x300 pixels.
|
45 |
"""
|
46 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
47 |
# Create a vector with the metrics in the defined order.
|
@@ -51,8 +50,7 @@ def generate_heatmap_image(model_entry):
|
|
51 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
52 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
53 |
|
54 |
-
|
55 |
-
plt.figure(figsize=(4, 4))
|
56 |
sns.heatmap(matrix,
|
57 |
mask=mask,
|
58 |
annot=True,
|
@@ -71,11 +69,8 @@ def generate_heatmap_image(model_entry):
|
|
71 |
plt.savefig(buf, format="png")
|
72 |
plt.close()
|
73 |
buf.seek(0)
|
74 |
-
|
75 |
-
# Convert the buffer into a PIL Image
|
76 |
image = Image.open(buf).convert("RGB")
|
77 |
-
# Resize the image to a fixed size of 300x300 pixels.
|
78 |
-
image = image.resize((600, 600), Image.LANCZOS)
|
79 |
return image
|
80 |
|
81 |
def generate_heatmaps(selected_model_names):
|
@@ -84,7 +79,10 @@ def generate_heatmaps(selected_model_names):
|
|
84 |
generate a heatmap for each, and return a list of PIL images.
|
85 |
"""
|
86 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
87 |
-
images = [
|
|
|
|
|
|
|
88 |
return images
|
89 |
|
90 |
# -------------------------------
|
@@ -95,15 +93,10 @@ with gr.Blocks() as demo:
|
|
95 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
96 |
|
97 |
with gr.Row():
|
98 |
-
model_dropdown = gr.Dropdown(
|
99 |
-
choices=MODEL_NAMES,
|
100 |
-
label="Select Model(s)",
|
101 |
-
multiselect=True,
|
102 |
-
value=MODEL_NAMES[:3]
|
103 |
-
)
|
104 |
|
105 |
generate_btn = gr.Button("Generate Heatmaps")
|
106 |
-
#
|
107 |
gallery = gr.Gallery(label="Heatmaps", columns=2)
|
108 |
|
109 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
|
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
|
|
44 |
"""
|
45 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
46 |
# Create a vector with the metrics in the defined order.
|
|
|
50 |
# Create a mask for the upper triangle (keeping the diagonal visible).
|
51 |
mask = np.triu(np.ones_like(matrix, dtype=bool), k=1)
|
52 |
|
53 |
+
plt.figure(figsize=(6, 5))
|
|
|
54 |
sns.heatmap(matrix,
|
55 |
mask=mask,
|
56 |
annot=True,
|
|
|
69 |
plt.savefig(buf, format="png")
|
70 |
plt.close()
|
71 |
buf.seek(0)
|
72 |
+
# Convert the buffer into a PIL Image.
|
|
|
73 |
image = Image.open(buf).convert("RGB")
|
|
|
|
|
74 |
return image
|
75 |
|
76 |
def generate_heatmaps(selected_model_names):
|
|
|
79 |
generate a heatmap for each, and return a list of PIL images.
|
80 |
"""
|
81 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
82 |
+
images = []
|
83 |
+
for entry in filtered_entries:
|
84 |
+
img = generate_heatmap_image(entry)
|
85 |
+
images.append(img)
|
86 |
return images
|
87 |
|
88 |
# -------------------------------
|
|
|
93 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
94 |
|
95 |
with gr.Row():
|
96 |
+
model_dropdown = gr.Dropdown(choices=MODEL_NAMES, label="Select Model(s)", multiselect=True, value=MODEL_NAMES[:3])
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
generate_btn = gr.Button("Generate Heatmaps")
|
99 |
+
# Use the 'columns' parameter to set a grid layout in the gallery.
|
100 |
gallery = gr.Gallery(label="Heatmaps", columns=2)
|
101 |
|
102 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|