Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -37,10 +37,11 @@ MODEL_NAMES = get_model_names(DATA)
|
|
37 |
# Define the six metrics in the desired order.
|
38 |
METRICS = ["Correctness", "Completeness", "Conciseness", "Helpfulness", "Honesty", "Harmlessness"]
|
39 |
|
40 |
-
def generate_heatmap_image(model_entry):
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
-
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap
|
|
|
44 |
"""
|
45 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
46 |
# Create a vector with the metrics in the defined order.
|
@@ -69,14 +70,16 @@ def generate_heatmap_image(model_entry):
|
|
69 |
plt.savefig(buf, format="png")
|
70 |
plt.close()
|
71 |
buf.seek(0)
|
72 |
-
|
|
|
73 |
image = Image.open(buf).convert("RGB")
|
|
|
74 |
return image
|
75 |
|
76 |
def generate_heatmaps(selected_model_names):
|
77 |
"""
|
78 |
Filter the global DATA for entries matching the selected model names,
|
79 |
-
generate a heatmap for each, and return a list of
|
80 |
"""
|
81 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
82 |
images = []
|
@@ -93,10 +96,15 @@ with gr.Blocks() as demo:
|
|
93 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
94 |
|
95 |
with gr.Row():
|
96 |
-
model_dropdown = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
generate_btn = gr.Button("Generate Heatmaps")
|
99 |
-
#
|
100 |
gallery = gr.Gallery(label="Heatmaps", columns=2)
|
101 |
|
102 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|
|
|
37 |
# Define the six metrics in the desired order.
|
38 |
METRICS = ["Correctness", "Completeness", "Conciseness", "Helpfulness", "Honesty", "Harmlessness"]
|
39 |
|
40 |
+
def generate_heatmap_image(model_entry, max_size=(400, 400)):
|
41 |
"""
|
42 |
For a given model entry, extract the six metrics and compute a 6x6 similarity matrix
|
43 |
+
using the definition: similarity = 1 - |v_i - v_j|, then return the heatmap as a PIL image.
|
44 |
+
The image is then resized (via thumbnail) to fit the specified max_size.
|
45 |
"""
|
46 |
scores = model_entry["claude-3.5-sonnet Scores"]["3C3H Scores"]
|
47 |
# Create a vector with the metrics in the defined order.
|
|
|
70 |
plt.savefig(buf, format="png")
|
71 |
plt.close()
|
72 |
buf.seek(0)
|
73 |
+
|
74 |
+
# Convert the buffer into a PIL Image and resize it
|
75 |
image = Image.open(buf).convert("RGB")
|
76 |
+
image.thumbnail(max_size) # e.g., (400, 400)
|
77 |
return image
|
78 |
|
79 |
def generate_heatmaps(selected_model_names):
|
80 |
"""
|
81 |
Filter the global DATA for entries matching the selected model names,
|
82 |
+
generate a heatmap for each, and return a list of PIL images.
|
83 |
"""
|
84 |
filtered_entries = [entry for entry in DATA if entry["Meta"]["Model Name"] in selected_model_names]
|
85 |
images = []
|
|
|
96 |
gr.Markdown("Select the models you want to compare and generate their heatmaps below.")
|
97 |
|
98 |
with gr.Row():
|
99 |
+
model_dropdown = gr.Dropdown(
|
100 |
+
choices=MODEL_NAMES,
|
101 |
+
label="Select Model(s)",
|
102 |
+
multiselect=True,
|
103 |
+
value=MODEL_NAMES[:3]
|
104 |
+
)
|
105 |
|
106 |
generate_btn = gr.Button("Generate Heatmaps")
|
107 |
+
# The 'columns' parameter will display images in a grid with 2 columns.
|
108 |
gallery = gr.Gallery(label="Heatmaps", columns=2)
|
109 |
|
110 |
generate_btn.click(fn=generate_heatmaps, inputs=model_dropdown, outputs=gallery)
|