Ling-lite-1.5 / app.py
雷娃
add interactive mode
29f6a41
raw
history blame
1.97 kB
# app.py
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
import torch
# load model and tokenizer
model_name = "inclusionAI/Ling-lite-1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
).eval()
# define chat function
def chat(user_input, max_new_tokens=512):
# chat history
messages = [
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
{"role": "user", "content": user_input}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# encode the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#create streamer
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
def generate():
model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer)
thread = Thread(target=generate)
thread.start()
prompt_len = len(prompt)
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text[prompt_len:]
thread.join()
# Construct Gradio Interface
interface = gr.Interface(
fn=chat,
inputs=[
gr.Textbox(lines=8, label="输入你的问题"),
gr.Slider(minimum=100, maximum=1024, step=50, label="生成长度")
],
outputs=[
gr.Textbox(lines=8, label="模型回复")
],
title="Ling-lite-1.5 AI助手",
description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
examples=[
["介绍大型语言模型的基本概念", 512],
["如何解决数学问题中的长上下文依赖?", 768]
]
)
# launch Gradion Service
interface.launch()