Spaces:
Running
Running
# app.py | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
import gradio as gr | |
import torch | |
# load model and tokenizer | |
model_name = "inclusionAI/Ling-lite-1.5" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
trust_remote_code=True | |
).eval() | |
# define chat function | |
def chat(user_input, max_new_tokens=512): | |
# chat history | |
messages = [ | |
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"}, | |
{"role": "user", "content": user_input} | |
] | |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# encode the input prompt | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
#create streamer | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
def generate(): | |
model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer) | |
thread = Thread(target=generate) | |
thread.start() | |
prompt_len = len(prompt) | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
yield generated_text | |
#yield generated_text[prompt_len:] | |
thread.join() | |
# Construct Gradio Interface | |
interface = gr.Interface( | |
fn=chat, | |
inputs=[ | |
gr.Textbox(lines=8, label="输入你的问题"), | |
gr.Slider(minimum=100, maximum=1024, step=50, label="生成长度") | |
], | |
outputs=[ | |
gr.Textbox(lines=8, label="模型回复") | |
], | |
title="Ling-lite-1.5 AI助手", | |
description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。", | |
examples=[ | |
["介绍大型语言模型的基本概念", 512], | |
["如何解决数学问题中的长上下文依赖?", 768] | |
] | |
) | |
# launch Gradion Service | |
interface.launch() | |