雷娃 commited on
Commit
4ef74d7
·
1 Parent(s): 229772a

Add application file

Browse files
Files changed (1) hide show
  1. app.py +55 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import gradio as gr
4
+ import torch
5
+
6
+ # load model and tokenizer
7
+ model_name = "inclusionAI/Ling-lite-1.5"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ model_name,
11
+ torch_dtype="auto",
12
+ device_map="auto",
13
+ trust_remote_code=True
14
+ ).eval()
15
+
16
+ # define chat function
17
+ def chat(user_input, max_new_tokens=512):
18
+ # chat history
19
+ messages = [
20
+ {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
21
+ {"role": "user", "content": user_input}
22
+ ]
23
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
24
+
25
+ # encode the input prompt
26
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
27
+
28
+ # generate response
29
+ with torch.no_grad():
30
+ outputs = model.generate(
31
+ **inputs,
32
+ max_new_tokens=max_new_tokens,
33
+ pad_token_id=tokenizer.eos_token_id
34
+ )
35
+ response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True)
36
+ return response
37
+
38
+ # Construct Gradio Interface
39
+ interface = gr.Interface(
40
+ fn=chat,
41
+ inputs=[
42
+ gr.Textbox(lines=5, label="输入你的问题"),
43
+ gr.Slider(minimum=100, maximum=1024, step=50, label="生成长度")
44
+ ],
45
+ outputs=gr.Textbox(label="模型回复"),
46
+ title="Ling-lite-1.5 MoE 模型 Demo",
47
+ description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
48
+ examples=[
49
+ ["介绍大型语言模型的基本概念", 512],
50
+ ["如何解决数学问题中的长上下文依赖?", 768]
51
+ ]
52
+ )
53
+
54
+ # launch Gradion Service
55
+ interface.launch()