Spaces:
Runtime error
Runtime error
File size: 10,661 Bytes
a771b16 b77fd74 a771b16 b77fd74 311333b 96e52af a771b16 b77fd74 a771b16 063af5f a771b16 1038327 063af5f a771b16 b77fd74 a771b16 b77fd74 1038327 b77fd74 a771b16 169acf1 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 b77fd74 a771b16 311333b a771b16 b77fd74 a771b16 b77fd74 a771b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
import SessionState
from mtranslate import translate
from prompts import PROMPT_LIST
import random
import time
from transformers import pipeline, set_seed, AutoConfig, AutoTokenizer, GPT2LMHeadModel, GPT2Tokenizer
import psutil
import torch
import os
from abstract_dataset import AbstractDataset
# st.set_page_config(page_title="Indonesian GPT-2")
mirror_url = "https://news-generator.ai-research.id/"
if "MIRROR_URL" in os.environ:
mirror_url = os.environ["MIRROR_URL"]
hf_auth_token = os.getenv("HF_AUTH_TOKEN", False)
st.write(f"Using Hugging Face auth token: {hf_auth_token[:10]}...")
MODELS = {
"Indonesian Newspaper - Indonesian GPT-2 Medium": {
"group": "Indonesian Newspaper",
"name": "ai-research-id/gpt2-medium-newspaper",
"description": "Newspaper Generator using Indonesian GPT-2 Medium.",
"text_generator": None,
"tokenizer": None
},
}
st.sidebar.markdown("""
<style>
.centeralign {
text-align: center;
}
</style>
<p class="centeralign">
<img src="https://huggingface.co/spaces/flax-community/gpt2-indonesian/resolve/main/huggingwayang.png"/>
</p>
""", unsafe_allow_html=True)
st.sidebar.markdown(f"""
___
<p class="centeralign">
This is a collection of applications that generates sentences using Indonesian GPT-2 models!
</p>
<p class="centeralign">
Created by <a href="https://huggingface.co/indonesian-nlp">Indonesian NLP</a> team @2021
<br/>
<a href="https://github.com/indonesian-nlp/gpt2-app" target="_blank">GitHub</a> | <a href="https://github.com/indonesian-nlp/gpt2-app" target="_blank">Project Report</a>
<br/>
A mirror of the application is available <a href="{mirror_url}" target="_blank">here</a>
</p>
""", unsafe_allow_html=True)
st.sidebar.markdown("""
___
""", unsafe_allow_html=True)
model_type = st.sidebar.selectbox('Model', (MODELS.keys()))
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_generator(model_name: str):
st.write(f"Loading the GPT2 model {model_name}, please wait...")
special_tokens = AbstractDataset.special_tokens
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_auth_token)
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
sep_token_id=tokenizer.sep_token_id,
pad_token_id=tokenizer.pad_token_id,
output_hidden_states=False,
use_auth_token=hf_auth_token)
model = GPT2LMHeadModel.from_pretrained(model_name, config=config, use_auth_token=hf_auth_token)
model.resize_token_embeddings(len(tokenizer))
return model, tokenizer
# Disable the st.cache for this function due to issue on newer version of streamlit
# @st.cache(suppress_st_warning=True, hash_funcs={tokenizers.Tokenizer: id})
def process(text_generator, tokenizer, title: str, keywords: str, text: str,
max_length: int = 200, do_sample: bool = True, top_k: int = 50, top_p: float = 0.95,
temperature: float = 1.0, max_time: float = 120.0, seed=42, repetition_penalty=1.0):
# st.write("Cache miss: process")
set_seed(seed)
if repetition_penalty == 0.0:
min_penalty = 1.05
max_penalty = 1.5
repetition_penalty = max(min_penalty + (1.0 - temperature) * (max_penalty - min_penalty), 0.8)
keywords = [keyword.strip() for keyword in keywords.split(",")]
keywords = AbstractDataset.join_keywords(keywords, randomize=False)
special_tokens = AbstractDataset.special_tokens
prompt = special_tokens['bos_token'] + title + \
special_tokens['sep_token'] + keywords + special_tokens['sep_token'] + text
print(f"title: {title}, keywords: {keywords}, text: {text}")
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
# device = torch.device("cuda")
# generated = generated.to(device)
text_generator.eval()
sample_outputs = text_generator.generate(generated,
do_sample=do_sample,
min_length=200,
max_length=max_length,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
num_return_sequences=1
)
result = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
print(f"result: {result}")
prefix_length = len(title) + len(keywords)
result = result[prefix_length:]
return result
st.title("Indonesian GPT-2 Applications")
prompt_group_name = MODELS[model_type]["group"]
st.header(prompt_group_name)
description = f"This is a bilingual (Indonesian and English) abstract generator using Indonesian GPT-2 Medium. We finetuned it with the Indonesian paper abstract dataset."
st.markdown(description)
model_name = f"Model name: [{MODELS[model_type]['name']}](https://huggingface.co/{MODELS[model_type]['name']})"
st.markdown(model_name)
if prompt_group_name in ["Indonesian Newspaper"]:
session_state = SessionState.get(prompt=None, prompt_box=None, text=None)
ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys()) + ["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS) - 1)
# Update prompt
if session_state.prompt is None:
session_state.prompt = prompt
elif session_state.prompt is not None and (prompt != session_state.prompt):
session_state.prompt = prompt
session_state.prompt_box = None
else:
session_state.prompt = prompt
# Update prompt box
if session_state.prompt == "Custom":
session_state.prompt_box = ""
session_state.title = ""
session_state.keywords = ""
else:
if session_state.prompt is not None and session_state.prompt_box is None:
session_state.prompt_box = random.choice(PROMPT_LIST[prompt_group_name][session_state.prompt])
session_state.title = st.text_input("Title", session_state.title)
session_state.keywords = st.text_input("Keywords", session_state.keywords)
session_state.text = st.text_area("Prompt", session_state.prompt_box)
max_length = st.sidebar.number_input(
"Maximum length",
value=200,
max_value=512,
help="The maximum length of the sequence to be generated."
)
decoding_methods = st.sidebar.radio(
"Set the decoding methods:",
key="decoding",
options=["Beam Search", "Sampling", "Contrastive Search"],
)
temperature = st.sidebar.slider(
"Temperature",
value=0.4,
min_value=0.0,
max_value=2.0
)
top_k = 30
top_p = 0.95
repetition_penalty = 0.0
if decoding_methods == "Beam Search":
do_sample = False
elif decoding_methods == "Sampling":
do_sample = True
top_k = st.sidebar.number_input(
"Top k",
value=top_k,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
top_p = st.sidebar.number_input(
"Top p",
value=top_p,
help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher "
"are kept for generation."
)
else:
do_sample = False
repetition_penalty = 1.0
penalty_alpha = st.sidebar.number_input(
"Penalty alpha",
value=0.6,
help="The penalty alpha for contrastive search."
)
top_k = st.sidebar.number_input(
"Top k",
value=4,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
seed = st.sidebar.number_input(
"Random Seed",
value=25,
help="The number used to initialize a pseudorandom number generator"
)
if decoding_methods != "Contrastive Search":
automatic_repetition_penalty = st.sidebar.checkbox(
"Automatic Repetition Penalty",
value=True
)
if not automatic_repetition_penalty:
repetition_penalty = st.sidebar.slider(
"Repetition Penalty",
value=1.0,
min_value=1.0,
max_value=2.0
)
for group_name in MODELS:
if MODELS[group_name]["group"] in ["Indonesian Newspaper"]:
MODELS[group_name]["text_generator"], MODELS[group_name]["tokenizer"] = \
get_generator(MODELS[group_name]["name"])
st.write(f"Generator: {MODELS}'")
if st.button("Run"):
with st.spinner(text="Getting results..."):
memory = psutil.virtual_memory()
st.subheader("Result")
time_start = time.time()
# text_generator = MODELS[model_type]["text_generator"]
result = process(MODELS[model_type]["text_generator"], MODELS[model_type]["tokenizer"],
title=session_state.title,
keywords=session_state.keywords,
text=session_state.text, max_length=int(max_length),
temperature=temperature, do_sample=do_sample,
top_k=int(top_k), top_p=float(top_p), seed=seed, repetition_penalty=repetition_penalty)
time_end = time.time()
time_diff = time_end - time_start
# result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("Translation")
translation = translate(result, "en", "id")
st.write(translation.replace("\n", " \n"))
# st.write(f"*do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, seed: {seed}*")
info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*
*Text generated in {time_diff:.5} seconds*
"""
st.write(info)
# Reset state
session_state.prompt = None
session_state.prompt_box = None
|