infinitymatter commited on
Commit
f6d7706
·
verified ·
1 Parent(s): 3458c2c

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -33
main.py DELETED
@@ -1,33 +0,0 @@
1
- import argparse
2
- import pandas as pd
3
- import streamlit as st
4
- from generate_schema import generate_schema
5
- from fetch_data import fetch_real_data
6
- from synthetic_generator import train_and_generate_synthetic
7
-
8
- def main():
9
- parser = argparse.ArgumentParser()
10
- parser.add_argument("--prompt", type=str, required=True, help="Describe the dataset you want")
11
- parser.add_argument("--domain", type=str, default="healthcare", help="Domain to fetch real data from (optional)")
12
- args = parser.parse_args()
13
-
14
- # Retrieve API token from Streamlit secrets
15
- hf_token = st.secrets["hf_token"]
16
-
17
- # Step 1: Generate schema using LLM
18
- schema = generate_schema(args.prompt, hf_token)
19
- print(f"📊 Generated schema: {schema}")
20
-
21
- # Step 2: Fetch real data (optional)
22
- real_data = fetch_real_data(args.domain)
23
-
24
- # Step 3: Preprocess (if necessary)
25
- real_data = real_data[schema['columns']] # Match columns from schema
26
- print(f"✅ Fetched real data with shape: {real_data.shape}")
27
-
28
- # Step 4: Train GAN and generate synthetic data
29
- output_path = f"outputs/synthetic_{args.domain}.csv"
30
- train_and_generate_synthetic(real_data, schema, output_path)
31
-
32
- if __name__ == "__main__":
33
- main()