File size: 4,118 Bytes
24cfc1b
 
 
 
 
 
 
 
 
 
 
 
 
3ee2d3e
24cfc1b
 
 
 
 
 
 
3ee2d3e
24cfc1b
 
 
 
 
 
 
 
 
c01c45a
 
 
24cfc1b
 
 
3ee2d3e
4640262
 
 
 
 
 
24cfc1b
 
3ee2d3e
24cfc1b
f811062
 
24cfc1b
 
 
 
 
 
 
 
 
 
 
 
 
 
3a82e83
24cfc1b
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee2d3e
 
 
 
 
 
 
 
 
 
 
3a82e83
3ee2d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a82e83
 
 
 
 
3ee2d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import numpy as np
import imageio

import tensorflow as tf
from tensorflow import keras

from utils import TubeMaskingGenerator
from utils import read_video, frame_sampling, denormalize, reconstrunction
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
from labels import K400_label_map, SSv2_label_map, UCF_label_map


def tube_mask_generator(mask_ratio):
    window_size = (
        num_frames // 2, 
        input_size // patch_size[0], 
        input_size // patch_size[1]
    )
    tube_mask = TubeMaskingGenerator(
        input_size=window_size, 
        mask_ratio=mask_ratio
    )
    make_bool = tube_mask()
    bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32)
    bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0)
    bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool)
    return bool_masked_pos_tf


def get_model(data_type):
    ft_model = keras.models.load_model(MODELS[data_type][0])
    pt_model = keras.models.load_model(MODELS[data_type][1])
    label_map = {v: k for k, v in K400_label_map.items()}
    return ft_model, pt_model, label_map


def inference(video_file, dataset_type, mask_ratio):
    print('---------------------------')
    print(video_file)
    print(dataset_type)
    print(mask_ratio)
    print('---------------------------')
    
    container = read_video(video_file)
    frames = frame_sampling(container, num_frames=num_frames)
    bool_masked_pos_tf = tube_mask_generator(mask_ratio)
    ft_model, pt_model, label_map = get_model(dataset_type)
    ft_model.trainable = False
    pt_model.trainable = False

    # inference on fine-tune model
    outputs_ft = ft_model(frames[None, ...], training=False)
    probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0)
    confidences = {
        label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1]
    }

    # inference on pre-trained model
    outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False)
    reconstruct_output, mask = reconstrunction(
        frames[None, ...], bool_masked_pos_tf, outputs_pt
    )

    # post process
    input_frame = denormalize(frames)
    input_mask = denormalize(mask[0] * frames)
    output_frame = denormalize(reconstruct_output)

    frames = []
    for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame):
        combined_frame = np.hstack([frame_a, frame_b, frame_c])
        frames.append(combined_frame)

    combined_gif = 'combined.gif'
    imageio.mimsave(combined_gif, frames, duration=300, loop=0)
    return confidences, combined_gif


def main():
    MODELS = {
        'K400': [
            './TFVideoMAE_S_K400_16x224_FT',
            './TFVideoMAE_S_K400_16x224_PT'
            ],
        'SSv2': [
            './TFVideoMAE_S_K400_16x224_FT',
            './TFVideoMAE_S_K400_16x224_PT'
            ],
        'UCF' : [
            './TFVideoMAE_S_K400_16x224_FT',
            './TFVideoMAE_S_K400_16x224_PT'
            ]
    }
    BENCHMARK_DATASETS = ['K400', 'SSv2', 'UCF']
    SAMPLE_EXAMPLES = [
        ["examples/k400.mp4", 'Kintetics-400'],
        ["examples/k400.mp4", 'SSv2'],
        ["examples/k400.mp4", 'UCF']
    ]

    iface = gr.Interface(
        fn=inference,
        inputs=[ 
            gr.Video(type="file", label="Input Video"),
            gr.Radio(
                BENCHMARK_DATASETS, 
                type='value',
                default=BENCHMARK_DATASETS[0],
                label='Dataset', 
            ),
            gr.Slider(
                0,
                1,
                step=0.05,
                default=0.5,
                label='Mask Ratio'
            )
        ],
        outputs=[
            gr.Label(num_top_classes=3, label='scores'),
            gr.Image(type="filepath", label='reconstructed')
        ],
        examples=SAMPLE_EXAMPLES,
        title="VideoMAE",
        description="Keras reimplementation of <a href='https://github.com/innat/VideoMAE'>VideoMAE</a> is presented here."
    )
    
    iface.launch()

if __name__ == '__main__':
    main()