|  | import gradio as gr | 
					
						
						|  | import numpy as np | 
					
						
						|  | import imageio | 
					
						
						|  |  | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | from tensorflow import keras | 
					
						
						|  |  | 
					
						
						|  | from utils import TubeMaskingGenerator | 
					
						
						|  | from utils import read_video, frame_sampling, denormalize, reconstrunction | 
					
						
						|  | from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size | 
					
						
						|  | from labels import K400_label_map, SSv2_label_map, UCF_label_map | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LABEL_MAPS = { | 
					
						
						|  | 'K400': K400_label_map, | 
					
						
						|  | 'SSv2': SSv2_label_map, | 
					
						
						|  | 'UCF' : UCF_label_map | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | ALL_MODELS = [ | 
					
						
						|  | 'TFVideoMAE_L_K400_16x224', | 
					
						
						|  | 'TFVideoMAE_B_SSv2_16x224', | 
					
						
						|  | 'TFVideoMAE_B_UCF_16x224', | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | sample_example = [ | 
					
						
						|  | ["examples/k400.mp4",  ALL_MODELS[0], 0.9], | 
					
						
						|  | ["examples/ssv2.avi",  ALL_MODELS[1], 0.8], | 
					
						
						|  | ["examples/ucf.mp4",   ALL_MODELS[2], 0.7], | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def tube_mask_generator(mask_ratio): | 
					
						
						|  | window_size = ( | 
					
						
						|  | num_frames // 2, | 
					
						
						|  | input_size // patch_size[0], | 
					
						
						|  | input_size // patch_size[1] | 
					
						
						|  | ) | 
					
						
						|  | tube_mask = TubeMaskingGenerator( | 
					
						
						|  | input_size=window_size, | 
					
						
						|  | mask_ratio=mask_ratio | 
					
						
						|  | ) | 
					
						
						|  | make_bool = tube_mask() | 
					
						
						|  | bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32) | 
					
						
						|  | bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0) | 
					
						
						|  | bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool) | 
					
						
						|  | return bool_masked_pos_tf | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model(model_type): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ft_model = keras.models.load_model(model_type + '_FT') | 
					
						
						|  | pt_model = keras.models.load_model(model_type + '_PT') | 
					
						
						|  |  | 
					
						
						|  | if 'K400' in model_type: | 
					
						
						|  | data_type = 'K400' | 
					
						
						|  | elif 'SSv2' in model_type: | 
					
						
						|  | data_type = 'SSv2' | 
					
						
						|  | else: | 
					
						
						|  | data_type = 'UCF' | 
					
						
						|  |  | 
					
						
						|  | label_map = LABEL_MAPS.get(data_type) | 
					
						
						|  | label_map = {v: k for k, v in label_map.items()} | 
					
						
						|  |  | 
					
						
						|  | return ft_model, pt_model, label_map | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def inference(video_file, model_type, mask_ratio): | 
					
						
						|  |  | 
					
						
						|  | container = read_video(video_file) | 
					
						
						|  | frames = frame_sampling(container, num_frames=num_frames) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | bool_masked_pos_tf = tube_mask_generator(mask_ratio) | 
					
						
						|  | ft_model, pt_model, label_map = get_model(model_type) | 
					
						
						|  | ft_model.trainable = False | 
					
						
						|  | pt_model.trainable = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs_ft = ft_model(frames[None, ...], training=False) | 
					
						
						|  | probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0) | 
					
						
						|  | confidences = { | 
					
						
						|  | label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1] | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False) | 
					
						
						|  | reconstruct_output, mask = reconstrunction( | 
					
						
						|  | frames[None, ...], bool_masked_pos_tf, outputs_pt | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_frame = denormalize(frames) | 
					
						
						|  | input_mask = denormalize(mask[0] * frames) | 
					
						
						|  | output_frame = denormalize(reconstruct_output) | 
					
						
						|  |  | 
					
						
						|  | frames = [] | 
					
						
						|  | for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame): | 
					
						
						|  | combined_frame = np.hstack([frame_a, frame_b, frame_c]) | 
					
						
						|  | frames.append(combined_frame) | 
					
						
						|  |  | 
					
						
						|  | combined_gif = 'combined.gif' | 
					
						
						|  | imageio.mimsave(combined_gif, frames, duration=300, loop=0) | 
					
						
						|  | return confidences, combined_gif | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | iface = gr.Interface( | 
					
						
						|  | fn=inference, | 
					
						
						|  | inputs=[ | 
					
						
						|  | gr.Video(type="file", label="Input Video"), | 
					
						
						|  | gr.Dropdown( | 
					
						
						|  | choices=ALL_MODELS, | 
					
						
						|  | default="TFVideoMAE_L_K400_16x224", | 
					
						
						|  | label="Model" | 
					
						
						|  | ), | 
					
						
						|  | gr.Slider( | 
					
						
						|  | 0.5, | 
					
						
						|  | 1.0, | 
					
						
						|  | step=0.1, | 
					
						
						|  | default=0.5, | 
					
						
						|  | label='Mask Ratio' | 
					
						
						|  | ) | 
					
						
						|  | ], | 
					
						
						|  | outputs=[ | 
					
						
						|  | gr.Label(num_top_classes=3, label='scores'), | 
					
						
						|  | gr.Image(type="filepath", label='reconstructed') | 
					
						
						|  | ], | 
					
						
						|  | examples=sample_example, | 
					
						
						|  | title="VideoMAE", | 
					
						
						|  | description="Keras reimplementation of <a href='https://github.com/innat/VideoMAE'>VideoMAE</a> is presented here." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | iface.launch() | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | main() |