Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,18 @@ from utils import read_video, frame_sampling, denormalize, reconstrunction
|
|
| 10 |
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
|
| 11 |
from labels import K400_label_map, SSv2_label_map, UCF_label_map
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
MODELS = {
|
| 14 |
'K400': [
|
| 15 |
'./TFVideoMAE_S_K400_16x224_FT',
|
|
@@ -48,9 +60,16 @@ def tube_mask_generator(mask_ratio):
|
|
| 48 |
return bool_masked_pos_tf
|
| 49 |
|
| 50 |
|
| 51 |
-
def get_model(
|
| 52 |
-
ft_model = keras.models.load_model(
|
| 53 |
-
pt_model = keras.models.load_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
label_map = LABEL_MAPS.get(data_type)
|
| 56 |
label_map = K400_label_map
|
|
@@ -59,14 +78,14 @@ def get_model(data_type):
|
|
| 59 |
return ft_model, pt_model, label_map
|
| 60 |
|
| 61 |
|
| 62 |
-
def inference(video_file,
|
| 63 |
# get sample data
|
| 64 |
container = read_video(video_file)
|
| 65 |
frames = frame_sampling(container, num_frames=num_frames)
|
| 66 |
|
| 67 |
# get models
|
| 68 |
bool_masked_pos_tf = tube_mask_generator(mask_ratio)
|
| 69 |
-
ft_model, pt_model, label_map = get_model(
|
| 70 |
ft_model.trainable = False
|
| 71 |
pt_model.trainable = False
|
| 72 |
|
|
@@ -110,12 +129,17 @@ def main():
|
|
| 110 |
fn=inference,
|
| 111 |
inputs=[
|
| 112 |
gr.Video(type="file", label="Input Video"),
|
| 113 |
-
gr.
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
gr.Slider(
|
| 120 |
0.5,
|
| 121 |
1.0,
|
|
|
|
| 10 |
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size
|
| 11 |
from labels import K400_label_map, SSv2_label_map, UCF_label_map
|
| 12 |
|
| 13 |
+
|
| 14 |
+
def available_models():
|
| 15 |
+
ALL_MODELS = [
|
| 16 |
+
'TFVideoMAE_S_K400_16x224',
|
| 17 |
+
'TFVideoMAE_B_K400_16x224',
|
| 18 |
+
'TFVideoMAE_L_K400_16x224',
|
| 19 |
+
'TFVideoMAE_S_SSv2_16x224',
|
| 20 |
+
'TFVideoMAE_B_SSv2_16x224',
|
| 21 |
+
'TFVideoMAE_B_UCF_16x224',
|
| 22 |
+
]
|
| 23 |
+
return ALL_MODELS
|
| 24 |
+
|
| 25 |
MODELS = {
|
| 26 |
'K400': [
|
| 27 |
'./TFVideoMAE_S_K400_16x224_FT',
|
|
|
|
| 60 |
return bool_masked_pos_tf
|
| 61 |
|
| 62 |
|
| 63 |
+
def get_model(model_type):
|
| 64 |
+
ft_model = keras.models.load_model(model_type + '_FT')
|
| 65 |
+
pt_model = keras.models.load_model(model_type + '_PT')
|
| 66 |
+
|
| 67 |
+
if 'K400' in model_type:
|
| 68 |
+
data_type = 'K400'
|
| 69 |
+
elif 'SSv2' in model_type:
|
| 70 |
+
data_type = 'SSv2'
|
| 71 |
+
else:
|
| 72 |
+
data_type = 'UCF'
|
| 73 |
|
| 74 |
label_map = LABEL_MAPS.get(data_type)
|
| 75 |
label_map = K400_label_map
|
|
|
|
| 78 |
return ft_model, pt_model, label_map
|
| 79 |
|
| 80 |
|
| 81 |
+
def inference(video_file, model_type, mask_ratio):
|
| 82 |
# get sample data
|
| 83 |
container = read_video(video_file)
|
| 84 |
frames = frame_sampling(container, num_frames=num_frames)
|
| 85 |
|
| 86 |
# get models
|
| 87 |
bool_masked_pos_tf = tube_mask_generator(mask_ratio)
|
| 88 |
+
ft_model, pt_model, label_map = get_model(model_type)
|
| 89 |
ft_model.trainable = False
|
| 90 |
pt_model.trainable = False
|
| 91 |
|
|
|
|
| 129 |
fn=inference,
|
| 130 |
inputs=[
|
| 131 |
gr.Video(type="file", label="Input Video"),
|
| 132 |
+
gr.Dropdown(
|
| 133 |
+
choices=available_models(),
|
| 134 |
+
value="TFVideoMAE_S_K400_16x224",
|
| 135 |
+
label="Model"
|
| 136 |
+
)
|
| 137 |
+
# gr.Radio(
|
| 138 |
+
# datasets,
|
| 139 |
+
# type='value',
|
| 140 |
+
# default=datasets[0],
|
| 141 |
+
# label='Dataset',
|
| 142 |
+
# ),
|
| 143 |
gr.Slider(
|
| 144 |
0.5,
|
| 145 |
1.0,
|