|
import os |
|
import cv2 |
|
import torch |
|
import argparse |
|
from torch.nn import functional as F |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
torch.set_grad_enabled(False) |
|
if torch.cuda.is_available(): |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
parser = argparse.ArgumentParser(description='STVSR for a pair of images') |
|
parser.add_argument('--img', dest='img', nargs=2, required=True) |
|
parser.add_argument('--exp', default=2, type=int) |
|
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range') |
|
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') |
|
|
|
args = parser.parse_args() |
|
|
|
from train_log.model import Model |
|
model = Model() |
|
model.device() |
|
model.load_model('train_log') |
|
model.eval() |
|
|
|
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): |
|
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) |
|
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) |
|
img0 = cv2.resize(img0, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) |
|
img1 = cv2.resize(img1, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) |
|
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0) |
|
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0) |
|
else: |
|
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED) |
|
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED) |
|
img0 = cv2.resize(img0, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) |
|
img1 = cv2.resize(img1, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) |
|
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) |
|
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) |
|
|
|
n, c, h, w = img0.shape |
|
ph = ((h - 1) // 32 + 1) * 32 |
|
pw = ((w - 1) // 32 + 1) * 32 |
|
padding = (0, pw - w, 0, ph - h) |
|
img0 = F.pad(img0, padding) |
|
img1 = F.pad(img1, padding) |
|
|
|
if args.ratio: |
|
print('ratio={}'.format(args.ratio)) |
|
img_list = model.inference(img0, img1, timestep=args.ratio) |
|
else: |
|
n = 2 ** args.exp - 1 |
|
time_list = [0] |
|
for i in range(n): |
|
time_list.append((i+1) * 1. / (n+1)) |
|
time_list.append(1) |
|
print(time_list) |
|
img_list = model.inference(img0, img1, timestep=time_list) |
|
|
|
if not os.path.exists('output'): |
|
os.mkdir('output') |
|
for i in range(len(img_list)): |
|
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): |
|
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) |
|
else: |
|
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]) |
|
|