File size: 1,323 Bytes
488eece
 
 
 
 
 
 
 
 
 
 
 
 
18e3c05
 
 
488eece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9039877
488eece
 
 
 
 
 
18e3c05
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gradio as gr
import subprocess
import os

def run_talkshow_model(audio_file):
    # Path to the TalkSHOW demo script
    demo_script = 'scripts/demo.py'
    
    # Configuration and model parameters
    config_file = './config/LS3DCG.json'
    body_model_name = 's2g_LS3DCG'
    body_model_path = 'experiments/2022-10-19-smplx_S2G-LS3DCG/ckpt-99.pth'
    
    # Path of the uploaded audio file
    audio_file_path = audio_file  # This is the file path returned by Gradio

    # Run the demo.py script with the necessary arguments
    command = [
        'python', demo_script,
        '--config_file', config_file,
        '--infer',
        '--audio_file', audio_file_path,
        '--body_model_name', body_model_name,
        '--body_model_path', body_model_path,
        '--id', '0'
    ]
    
    # Run the subprocess and capture any output
    try:
        subprocess.run(command, check=True)
        return "Mesh generated successfully!"
    except subprocess.CalledProcessError as e:
        return f"Error running the model: {str(e)}"

# Set up the Gradio interface
interface = gr.Interface(
    fn=run_talkshow_model, 
    inputs=gr.Audio(source="upload", type="filepath"), 
    outputs="text",
    title="TalkSHOW: Audio to Mesh"
)

# Launch the interface
if __name__ == "__main__":
    interface.launch()