Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| # os.environ["PYOPENGL_PLATFORM"] = "egl" | |
| from transformers import Wav2Vec2Processor | |
| from visualise.rendering import RenderTool | |
| sys.path.append(os.getcwd()) | |
| from glob import glob | |
| import numpy as np | |
| import json | |
| import smplx as smpl | |
| from nets import * | |
| from trainer.options import parse_args | |
| from data_utils import torch_data | |
| from trainer.config import load_JsonConfig | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.utils import data | |
| from scripts.diversity import init_model, init_dataloader, get_vertices | |
| from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses | |
| from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle | |
| import time | |
| global_orient = torch.tensor([3.0747, -0.0158, -0.0152]) | |
| def infer(data_root, g_body, g_face, g_body2, exp_name, infer_loader, infer_set, device, norm_stats, smplx, | |
| smplx_model, rendertool, args=None, config=None, var=None): | |
| am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme") | |
| am_sr = 16000 | |
| num_sample = 1 | |
| face = False | |
| if face: | |
| body_static = torch.zeros([1, 162], device='cuda') | |
| body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1) | |
| stand = False | |
| j = 0 | |
| gt_0 = None | |
| for bat in infer_loader: | |
| poses_ = bat['poses'].to(torch.float32).to(device) | |
| if poses_.shape[-1] == 300: | |
| j = j + 1 | |
| if j > 1000: | |
| continue | |
| id = bat['speaker'].to('cuda') - 20 | |
| if config.Data.pose.expression: | |
| expression = bat['expression'].to(device).to(torch.float32) | |
| poses = torch.cat([poses_, expression], dim=1) | |
| else: | |
| poses = poses_ | |
| cur_wav_file = bat['aud_file'][0] | |
| betas = bat['betas'][0].to(torch.float64).to('cuda') | |
| # betas = torch.zeros([1, 300], dtype=torch.float64).to('cuda') | |
| gt = poses.to('cuda').squeeze().transpose(1, 0) | |
| if config.Data.pose.normalization: | |
| gt = denormalize(gt, norm_stats[0], norm_stats[1]).squeeze(dim=0) | |
| if config.Data.pose.convert_to_6d: | |
| if config.Data.pose.expression: | |
| gt_exp = gt[:, -100:] | |
| gt = gt[:, :-100] | |
| gt = gt.reshape(gt.shape[0], -1, 6) | |
| gt = matrix_to_axis_angle(rotation_6d_to_matrix(gt)).reshape(gt.shape[0], -1) | |
| gt = torch.cat([gt, gt_exp], -1) | |
| if face: | |
| gt = torch.cat([gt[:, :3], body_static.repeat(gt.shape[0], 1), gt[:, -100:]], dim=-1) | |
| result_list = [gt] | |
| # cur_wav_file = '.\\training_data\\french-V4.wav' | |
| # pred_face = g_face.infer_on_audio(cur_wav_file, | |
| # initial_pose=poses_, | |
| # norm_stats=None, | |
| # w_pre=False, | |
| # # id=id, | |
| # frame=None, | |
| # am=am, | |
| # am_sr=am_sr | |
| # ) | |
| # | |
| # pred_face = torch.tensor(pred_face).squeeze().to('cuda') | |
| pred_face = torch.zeros([gt.shape[0], 103], device='cuda') | |
| pred_jaw = pred_face[:, :3] | |
| pred_face = pred_face[:, 3:] | |
| # id = torch.tensor([0], device='cuda') | |
| for i in range(num_sample): | |
| pred_res = g_body.infer_on_audio(cur_wav_file, | |
| initial_pose=poses_, | |
| norm_stats=norm_stats, | |
| txgfile=None, | |
| id=id, | |
| var=var, | |
| fps=30, | |
| continuity=True, | |
| smooth=False | |
| ) | |
| pred = torch.tensor(pred_res).squeeze().to('cuda') | |
| if pred.shape[0] < pred_face.shape[0]: | |
| repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1) | |
| pred = torch.cat([pred, repeat_frame], dim=0) | |
| else: | |
| pred = pred[:pred_face.shape[0], :] | |
| if config.Data.pose.convert_to_6d: | |
| pred = pred.reshape(pred.shape[0], -1, 6) | |
| pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred)) | |
| pred = pred.reshape(pred.shape[0], -1) | |
| pred = torch.cat([pred_jaw, pred, pred_face], dim=-1) | |
| # pred[:, 9:12] = global_orient | |
| pred = part2full(pred, stand) | |
| if face: | |
| pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1) | |
| # result_list[0] = poses2pred(result_list[0], stand) | |
| # if gt_0 is None: | |
| # gt_0 = gt | |
| # pred = pred2poses(pred, gt_0) | |
| # result_list[0] = poses2poses(result_list[0], gt_0) | |
| result_list.append(pred) | |
| vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression) | |
| result_list = [res.to('cpu') for res in result_list] | |
| dict = np.concatenate(result_list[1:], axis=0) | |
| file_name = 'visualise/video/' + config.Log.name + '/' + \ | |
| cur_wav_file.split('\\')[-1].split('.')[-2].split('/')[-1] | |
| np.save(file_name, dict) | |
| rendertool._render_continuity(cur_wav_file, vertices_list[1], frame=60) | |
| def main(): | |
| parser = parse_args() | |
| args = parser.parse_args() | |
| device = torch.device(args.gpu) | |
| torch.cuda.set_device(device) | |
| config = load_JsonConfig(args.config_file) | |
| smplx = True | |
| os.environ['smplx_npz_path'] = config.smplx_npz_path | |
| os.environ['extra_joint_path'] = config.extra_joint_path | |
| os.environ['j14_regressor_path'] = config.j14_regressor_path | |
| print('init model...') | |
| body_model_name = 's2g_body_pixel' | |
| body_model_path = './experiments/2022-12-31-smplx_S2G-body-pixel-conti-wide/ckpt-99.pth' # './experiments/2022-10-09-smplx_S2G-body-pixel-aud-3p/ckpt-99.pth' | |
| generator = init_model(body_model_name, body_model_path, args, config) | |
| # face_model_name = 's2g_face' | |
| # face_model_path = './experiments/2022-10-15-smplx_S2G-face-sgd-3p-wv2/ckpt-99.pth' # './experiments/2022-09-28-smplx_S2G-face-faceformer-3d/ckpt-99.pth' | |
| # generator_face = init_model(face_model_name, face_model_path, args, config) | |
| generator_face = None | |
| print('init dataloader...') | |
| infer_set, infer_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config) | |
| print('init smlpx model...') | |
| dtype = torch.float64 | |
| model_params = dict(model_path='E:/PycharmProjects/Motion-Projects/models', | |
| model_type='smplx', | |
| create_global_orient=True, | |
| create_body_pose=True, | |
| create_betas=True, | |
| num_betas=300, | |
| create_left_hand_pose=True, | |
| create_right_hand_pose=True, | |
| use_pca=False, | |
| flat_hand_mean=False, | |
| create_expression=True, | |
| num_expression_coeffs=100, | |
| num_pca_comps=12, | |
| create_jaw_pose=True, | |
| create_leye_pose=True, | |
| create_reye_pose=True, | |
| create_transl=False, | |
| # gender='ne', | |
| dtype=dtype, ) | |
| smplx_model = smpl.create(**model_params).to('cuda') | |
| print('init rendertool...') | |
| rendertool = RenderTool('visualise/video/' + config.Log.name) | |
| infer(config.Data.data_root, generator, generator_face, None, args.exp_name, infer_loader, infer_set, device, | |
| norm_stats, smplx, smplx_model, rendertool, args, config, (None, None)) | |
| if __name__ == '__main__': | |
| main() | |