Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -90,25 +90,12 @@ def set_example_image(example: list) -> dict:
|
|
90 |
def set_example_url(example: list) -> dict:
|
91 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
92 |
|
93 |
-
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
94 |
-
|
95 |
-
description = """
|
96 |
-
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
97 |
-
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
|
98 |
-
This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
|
99 |
-
Links to HuggingFace Models:
|
100 |
-
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
|
101 |
-
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
|
102 |
-
"""
|
103 |
|
104 |
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"]
|
105 |
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
106 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
107 |
|
108 |
-
twitter_link = """
|
109 |
-
[](https://twitter.com/nickmuchi)
|
110 |
-
"""
|
111 |
-
|
112 |
css = '''
|
113 |
h1#title {
|
114 |
text-align: center;
|
@@ -117,9 +104,7 @@ h1#title {
|
|
117 |
demo = gr.Blocks(css=css)
|
118 |
|
119 |
with demo:
|
120 |
-
gr.Markdown(title)
|
121 |
-
gr.Markdown(description)
|
122 |
-
gr.Markdown(twitter_link)
|
123 |
options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True)
|
124 |
slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold')
|
125 |
|
@@ -146,7 +131,7 @@ with demo:
|
|
146 |
|
147 |
with gr.TabItem('WebCam'):
|
148 |
with gr.Row():
|
149 |
-
web_input = gr.
|
150 |
img_output_from_webcam = gr.Image()
|
151 |
cam_but = gr.Button('Detect')
|
152 |
|
|
|
90 |
def set_example_url(example: list) -> dict:
|
91 |
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
|
92 |
|
93 |
+
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"]
|
96 |
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
|
97 |
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
|
98 |
|
|
|
|
|
|
|
|
|
99 |
css = '''
|
100 |
h1#title {
|
101 |
text-align: center;
|
|
|
104 |
demo = gr.Blocks(css=css)
|
105 |
|
106 |
with demo:
|
107 |
+
gr.Markdown(title)
|
|
|
|
|
108 |
options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True)
|
109 |
slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold')
|
110 |
|
|
|
131 |
|
132 |
with gr.TabItem('WebCam'):
|
133 |
with gr.Row():
|
134 |
+
web_input = gr.Camera()
|
135 |
img_output_from_webcam = gr.Image()
|
136 |
cam_but = gr.Button('Detect')
|
137 |
|