insideman commited on
Commit
fbde136
·
verified ·
1 Parent(s): f9b1790

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -21
app.py CHANGED
@@ -104,22 +104,12 @@ def set_example_url(example: list) -> dict:
104
 
105
  title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
106
 
107
- description = """
108
- YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
109
- The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
110
- This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
111
- Links to HuggingFace Models:
112
- - [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
113
- - [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
114
- """
115
 
116
  models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
117
  urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
118
  images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
119
-
120
- twitter_link = """
121
- [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
122
- """
123
 
124
  css = '''
125
  h1#title {
@@ -129,9 +119,7 @@ h1#title {
129
  demo = gr.Blocks(css=css)
130
 
131
  with demo:
132
- gr.Markdown(title)
133
- gr.Markdown(description)
134
- gr.Markdown(twitter_link)
135
  options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
136
  slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
137
 
@@ -140,10 +128,10 @@ with demo:
140
  with gr.Row():
141
  with gr.Column():
142
  url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
143
- original_image = gr.Image(shape=(750,750))
144
  url_input.change(get_original_image, url_input, original_image)
145
  with gr.Column():
146
- img_output_from_url = gr.Image(shape=(750,750))
147
 
148
  with gr.Row():
149
  example_url = gr.Examples(examples=urls,inputs=[url_input])
@@ -153,8 +141,8 @@ with demo:
153
 
154
  with gr.TabItem('Image Upload'):
155
  with gr.Row():
156
- img_input = gr.Image(type='pil',shape=(750,750))
157
- img_output_from_upload= gr.Image(shape=(750,750))
158
 
159
  with gr.Row():
160
  example_images = gr.Examples(examples=images,inputs=[img_input])
@@ -164,8 +152,8 @@ with demo:
164
 
165
  with gr.TabItem('WebCam'):
166
  with gr.Row():
167
- web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
168
- img_output_from_webcam= gr.Image(shape=(750,750))
169
 
170
  cam_but = gr.Button('Detect')
171
 
 
104
 
105
  title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
106
 
107
+
 
 
 
 
 
 
 
108
 
109
  models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
110
  urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
111
  images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
112
+
 
 
 
113
 
114
  css = '''
115
  h1#title {
 
119
  demo = gr.Blocks(css=css)
120
 
121
  with demo:
122
+ gr.Markdown(title)
 
 
123
  options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
124
  slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
125
 
 
128
  with gr.Row():
129
  with gr.Column():
130
  url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
131
+ original_image = gr.Image()
132
  url_input.change(get_original_image, url_input, original_image)
133
  with gr.Column():
134
+ img_output_from_url = gr.Image()
135
 
136
  with gr.Row():
137
  example_url = gr.Examples(examples=urls,inputs=[url_input])
 
141
 
142
  with gr.TabItem('Image Upload'):
143
  with gr.Row():
144
+ img_input = gr.Image(type='pil')
145
+ img_output_from_upload= gr.Image()
146
 
147
  with gr.Row():
148
  example_images = gr.Examples(examples=images,inputs=[img_input])
 
152
 
153
  with gr.TabItem('WebCam'):
154
  with gr.Row():
155
+ web_input = gr.Image(source='webcam',type='pil',streaming=True)
156
+ img_output_from_webcam= gr.Image()
157
 
158
  cam_but = gr.Button('Detect')
159