Spaces:
Running
Running
# src/data_loader/loader.py | |
import os | |
from glob import glob | |
from langchain_community.document_loaders import TextLoader # cite: embed_pipeline.py | |
from langchain.schema import Document # cite: embed_pipeline.py | |
from config.settings import DOCS_FOLDER | |
import logging | |
logger = logging.getLogger(__name__) | |
def load_documents(docs_folder: str = DOCS_FOLDER) -> list[Document]: | |
""" | |
Loads documents from the specified folder. | |
Args: | |
docs_folder: The path to the folder containing documents. | |
Returns: | |
A list of loaded Langchain Document objects. | |
""" | |
all_docs = [] | |
files = glob(os.path.join(docs_folder, "*.*")) # cite: embed_pipeline.py | |
for path in files: | |
try: | |
# --- Financial Ministry Adaptation --- | |
# TODO: Implement more sophisticated loading for specific government ruling formats (PDFs, DOCX, XML, etc.) | |
# This might involve using libraries like pdfminer.six, python-docx, or custom parsers. | |
# Handle scanned documents (OCR). | |
# ------------------------------------ | |
# Attempt UTF-8 loading with autodetect fallback | |
loader = TextLoader( | |
path, | |
encoding="utf-8", | |
autodetect_encoding=True | |
) | |
docs = loader.load() | |
logger.info(f"Successfully loaded {os.path.basename(path)}") | |
except UnicodeDecodeError: # cite: embed_pipeline.py | |
# Fallback to a lenient read if decoding fails | |
logger.warning(f"Decoding error on {path}, falling back to ignore-errors mode") # cite: embed_pipeline.py | |
try: | |
with open(path, "r", encoding="utf-8", errors="ignore") as f: # cite: embed_pipeline.py | |
text = f.read() | |
docs = [Document(page_content=text, metadata={"source": path})] # cite: embed_pipeline.py | |
except Exception as e: | |
logger.error(f"Failed to read file {path}: {e}") | |
continue # Skip this file if even lenient read fails | |
except Exception as e: | |
logger.error(f"Failed to load file {path}: {e}") | |
continue # Skip this file if loading fails | |
all_docs.extend(docs) | |
logger.info(f"Finished loading documents. Total documents loaded: {len(all_docs)}") | |
return all_docs |