### General RAG Platform Plan #### Overview The goal is to transform the existing RAG system into a versatile, modular platform for building various RAG applications. #### Architecture ```mermaid %%{init: {'theme': 'neutral', 'themeVariables': { 'primaryColor': '#e3f2fd', 'edgeLabelBackground':'#fffde7'}}}%% graph TD A[General RAG Platform Architecture] subgraph DataIngestion A1[Universal Data Loader\n<- Files\n<- Databases\n<- APIs\n<- Cloud Storage] A2[Smart Document Processor\n<- Format detection\n<- Metadata extraction\n<- Content normalization] A3[Chunking Strategies\n<- Semantic\n<- Structural\n<- Domain-specific] end subgraph CoreServices B1[Embedding Service\n<- Multi-model support\n<- Batch processing\n<- Cache layer] B2[VectorDB Orchestrator\n<- Chroma\n<- Pinecone\n<- Weaviate\n<- FAISS] B3[LLM Gateway\n<- OpenAI\n<- Anthropic\n<- Mistral\n<- Custom models] end subgraph QueryEngine C1[Query Analyzer\n<- Intent detection\n<- Query expansion\n<- Filter generation] C2[Hybrid Retriever\n<- Vector search\n<- Keyword\n<- Hybrid ranking] C3[Response Generator\n<- Citation\n<- Formatting\n<- Guardrails] end subgraph Management D1[Config Manager\n<- Tenant isolation\n<- Model configs\n<- Access controls] D2[Monitoring\n<- Metrics\n<- Logging\n<- Alerting] D3[API Gateway\n<- REST\n<- GraphQL\n<- gRPC] end subgraph Extensibility E1[Plugin System\n<- Custom loaders\n<- Chunkers\n<- Post-processors] E2[Workflow Engine\n<- Pipeline designer\n<- Versioning\n<- A/B testing] end A --> DataIngestion A --> CoreServices A --> QueryEngine A --> Management A --> Extensibility DataIngestion -->|Processed Chunks| CoreServices CoreServices -->|Vector Index| QueryEngine QueryEngine -->|Formatted Response| Management Management -->|APIs| ExternalSystems ``` #### Implementation Plan 1. **Core Abstraction Layer** - Unified interfaces for: - Document Loaders (File, DB, API) - Chunking Strategies - Embedding Providers - VectorDB Adapters - LLM Gateways 2. **Multi-tenancy Features** - Tenant isolation - Resource quotas - Custom pipeline configurations - Role-based access control 3. **Advanced Retrieval** - Hybrid search (vector + keyword + custom) - Query understanding module - Result reranking layer - Cache mechanisms 4. **Operational Excellence** - Observability stack - Auto-scaling - CI/CD pipelines - Health checks 5. **Security** - Data encryption - Audit trails - Content moderation - PII detection 6. **Developer Ecosystem** - SDKs (Python/JS) - CLI tools - Template repository - Testing framework