File size: 12,481 Bytes
a0f9df9
 
 
 
 
8a4b920
a0f9df9
 
 
 
 
8a4b920
 
 
a0f9df9
599f112
 
 
 
8a4b920
599f112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db914fe
599f112
 
 
 
 
 
 
 
 
 
 
 
 
 
0a44641
599f112
 
 
 
 
 
 
0a44641
 
599f112
 
 
8a4b920
599f112
 
8a4b920
a0f9df9
599f112
 
8a4b920
 
 
599f112
8a4b920
 
 
599f112
8a4b920
 
599f112
 
 
8a4b920
599f112
8a4b920
 
599f112
 
 
8a4b920
599f112
 
a0f9df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a44641
 
 
a0f9df9
8a4b920
a0f9df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a4b920
a0f9df9
 
 
 
 
 
 
 
8a4b920
 
 
 
 
 
a0f9df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a4b920
a0f9df9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- SmolaAgent Implementation ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class SmolaAgent:
    def __init__(self):
        print("=" * 50)
        print("SmolaAgent initialization started...")
        self.agent = None
        
        try:
            # Step 1: Import validation
            print("Step 1: Validating smolagents imports...")
            from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
            print("βœ… Step 1: Imports successful")
            
            # Step 2: Initialize DuckDuckGoSearchTool
            print("Step 2: Initializing DuckDuckGoSearchTool...")
            try:
                search_tool = DuckDuckGoSearchTool()
                print("βœ… Step 2: DuckDuckGoSearchTool initialized successfully")
            except Exception as e:
                print(f"❌ Step 2: DuckDuckGoSearchTool initialization failed: {e}")
                print(f"❌ Step 2: Error type: {type(e).__name__}")
                raise
            
            # Step 3: Initialize InferenceClientModel
            print("Step 3: Initializing InferenceClientModel...")
            try:
                model = InferenceClientModel(token=os.getenv("HF_TOKEN"))
                print("βœ… Step 3: InferenceClientModel initialized successfully")
            except Exception as e:
                print(f"❌ Step 3: InferenceClientModel initialization failed: {e}")
                print(f"❌ Step 3: Error type: {type(e).__name__}")
                print(f"❌ Step 3: This might be due to missing HF_TOKEN environment variable")
                raise
            
            # Step 4: Initialize CodeAgent
            print("Step 4: Initializing CodeAgent...")
            try:
                self.agent = CodeAgent(
                    tools=[search_tool], 
                    model=model,
                    add_base_tools=True,
                    verbosity_level=1                )
                print("βœ… Step 4: CodeAgent initialized successfully")
                print("βœ… SmolaAgent initialization completed successfully!")
                
            except Exception as e:
                print(f"❌ Step 4: CodeAgent initialization failed: {e}")
                print(f"❌ Step 4: Error type: {type(e).__name__}")
                raise

        except Exception as e:
            print(f"❌ General initialization error: {e}")
            print(f"❌ Error type: {type(e).__name__}")
            print(f"❌ Falling back to None agent")
            self.agent = None
            
        print("=" * 50)
    
    def __call__(self, question: str) -> str:
        print("-" * 30)
        print(f"Agent called with question (first 100 chars): {question[:100]}...")
        
        if self.agent is None:
            fallback_answer = "Agent initialization failed, providing fallback response."
            print(f"❌ Agent is None, returning fallback: {fallback_answer}")
            return fallback_answer
        
        try:
            print("πŸ”„ Starting agent.run()...")
            # Use the CodeAgent to process the question
            result = self.agent.run(question)
            print(f"βœ… Agent.run() completed successfully")
            print(f"βœ… Result type: {type(result).__name__}")
            print(f"βœ… Result preview (first 200 chars): {str(result)[:200]}...")
            return str(result)
            
        except Exception as e:
            error_message = f"Error running agent: {str(e)}"
            print(f"❌ Agent.run() failed: {error_message}")
            print(f"❌ Error type: {type(e).__name__}")
            print(f"❌ Full error details: {repr(e)}")
            return error_message
        finally:
            print("-" * 30)

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = SmolaAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# SmolaAgent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        **Agent Details:**
        - Uses **smolagents** library with **CodeAgent**
        - Equipped with **DuckDuckGoSearchTool** for web search capabilities
        - Powered by **InferenceClientModel** for advanced reasoning
        - Includes base tools for enhanced functionality
        
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for SmolaAgent Evaluation...")
    demo.launch(debug=True, share=False)