Spaces:
Running
Running
Patryk Ptasiński
commited on
Commit
·
3726350
1
Parent(s):
1be0f7d
Add cuda
Browse files- app.py +16 -1
- test_models.sh +0 -45
app.py
CHANGED
@@ -1,11 +1,23 @@
|
|
1 |
from typing import List, Dict, Any
|
2 |
import json
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
from fastapi import FastAPI
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Available models
|
10 |
MODELS = {
|
11 |
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
|
@@ -58,12 +70,14 @@ def load_model(model_name: str):
|
|
58 |
# Load the new model
|
59 |
trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False)
|
60 |
try:
|
|
|
61 |
current_model = SentenceTransformer(
|
62 |
model_name,
|
63 |
trust_remote_code=trust_remote_code,
|
64 |
-
device=
|
65 |
)
|
66 |
current_model_name = model_name
|
|
|
67 |
except Exception as e:
|
68 |
raise ValueError(f"Failed to load model '{model_name}': {str(e)}")
|
69 |
|
@@ -148,6 +162,7 @@ with gr.Blocks(title="Multi-Model Text Embeddings", css="""
|
|
148 |
""") as app:
|
149 |
gr.Markdown("# Multi-Model Text Embeddings")
|
150 |
gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.")
|
|
|
151 |
|
152 |
# Model selector dropdown (allows custom input)
|
153 |
model_dropdown = gr.Dropdown(
|
|
|
1 |
from typing import List, Dict, Any
|
2 |
import json
|
3 |
+
import torch
|
4 |
|
5 |
import gradio as gr
|
6 |
from fastapi import FastAPI
|
7 |
from fastapi.responses import JSONResponse
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
|
10 |
+
# Device detection - use GPU if available, otherwise CPU
|
11 |
+
def get_device():
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
print("🚀 GPU detected - using CUDA for acceleration")
|
14 |
+
return 'cuda'
|
15 |
+
else:
|
16 |
+
print("💻 Using CPU for inference")
|
17 |
+
return 'cpu'
|
18 |
+
|
19 |
+
DEVICE = get_device()
|
20 |
+
|
21 |
# Available models
|
22 |
MODELS = {
|
23 |
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
|
|
|
70 |
# Load the new model
|
71 |
trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False)
|
72 |
try:
|
73 |
+
print(f"Loading model '{model_name}' on {DEVICE}")
|
74 |
current_model = SentenceTransformer(
|
75 |
model_name,
|
76 |
trust_remote_code=trust_remote_code,
|
77 |
+
device=DEVICE
|
78 |
)
|
79 |
current_model_name = model_name
|
80 |
+
print(f"✅ Model '{model_name}' loaded successfully on {DEVICE}")
|
81 |
except Exception as e:
|
82 |
raise ValueError(f"Failed to load model '{model_name}': {str(e)}")
|
83 |
|
|
|
162 |
""") as app:
|
163 |
gr.Markdown("# Multi-Model Text Embeddings")
|
164 |
gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.")
|
165 |
+
gr.Markdown(f"**Device**: {DEVICE.upper()} {'🚀' if DEVICE == 'cuda' else '💻'}")
|
166 |
|
167 |
# Model selector dropdown (allows custom input)
|
168 |
model_dropdown = gr.Dropdown(
|
test_models.sh
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
|
3 |
-
# Test script for all embedding models
|
4 |
-
BASE_URL="https://ipepe-nomic-embeddings.hf.space"
|
5 |
-
TEST_TEXT="Hello world test"
|
6 |
-
|
7 |
-
echo "Testing all embedding models..."
|
8 |
-
echo "================================="
|
9 |
-
|
10 |
-
# Get list of models
|
11 |
-
MODELS=$(curl -s "${BASE_URL}/models" | grep -o '"[^"]*"' | grep -E "(nomic|BAAI|sentence|Snowflake|granite|Qwen|stella|nvidia|Alibaba|intfloat)" | tr -d '"')
|
12 |
-
|
13 |
-
# Test each model
|
14 |
-
for model in $MODELS; do
|
15 |
-
echo "Testing: $model"
|
16 |
-
|
17 |
-
# Test with 30 second timeout
|
18 |
-
response=$(timeout 30 curl -X POST "${BASE_URL}/embed" \
|
19 |
-
-H "Content-Type: application/json" \
|
20 |
-
-d "{\"text\": \"$TEST_TEXT\", \"model\": \"$model\"}" \
|
21 |
-
-w "\nHTTP_STATUS:%{http_code}" \
|
22 |
-
-s 2>/dev/null)
|
23 |
-
|
24 |
-
if [ $? -eq 124 ]; then
|
25 |
-
echo " ❌ TIMEOUT (>30s)"
|
26 |
-
else
|
27 |
-
status=$(echo "$response" | grep "HTTP_STATUS" | cut -d: -f2)
|
28 |
-
|
29 |
-
if [ "$status" = "200" ]; then
|
30 |
-
# Check if response contains embedding
|
31 |
-
if echo "$response" | grep -q '"embedding":\['; then
|
32 |
-
echo " ✅ SUCCESS"
|
33 |
-
else
|
34 |
-
echo " ⚠️ PARTIAL - No embedding in response"
|
35 |
-
fi
|
36 |
-
else
|
37 |
-
# Extract error message
|
38 |
-
error_msg=$(echo "$response" | grep -o '"error":"[^"]*"' | cut -d'"' -f4)
|
39 |
-
echo " ❌ ERROR ($status): $error_msg"
|
40 |
-
fi
|
41 |
-
fi
|
42 |
-
echo ""
|
43 |
-
done
|
44 |
-
|
45 |
-
echo "Testing complete!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|