Spaces:
Running
Running
Patryk Ptasiński
commited on
Commit
·
b366822
1
Parent(s):
cc86f1b
Add 15+ embedding models with dropdown selector and comprehensive API support
Browse files
CLAUDE.md
CHANGED
@@ -4,7 +4,7 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
|
4 |
|
5 |
## Project Overview
|
6 |
|
7 |
-
This is a Hugging Face Spaces application that provides text embeddings using the Nomic
|
8 |
|
9 |
## Key Commands
|
10 |
|
@@ -29,11 +29,12 @@ huggingface-cli login
|
|
29 |
## Architecture
|
30 |
|
31 |
The application consists of a single `app.py` file with:
|
32 |
-
- **Model
|
33 |
-
- **
|
34 |
-
- **
|
35 |
-
- **
|
36 |
-
- **
|
|
|
37 |
|
38 |
## Important Configuration Details
|
39 |
|
@@ -48,16 +49,20 @@ Two options for API access:
|
|
48 |
|
49 |
1. **Direct FastAPI endpoint** (no queue):
|
50 |
```bash
|
|
|
|
|
|
|
|
|
51 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
52 |
-H "Content-Type: application/json" \
|
53 |
-
-d '{"text": "your text"}'
|
54 |
```
|
55 |
|
56 |
2. **Gradio client** (handles queue automatically):
|
57 |
```python
|
58 |
from gradio_client import Client
|
59 |
client = Client("ipepe/nomic-embeddings")
|
60 |
-
result = client.predict("text to embed", api_name="/predict")
|
61 |
```
|
62 |
|
63 |
## Deployment Notes
|
|
|
4 |
|
5 |
## Project Overview
|
6 |
|
7 |
+
This is a Hugging Face Spaces application that provides text embeddings using 15+ state-of-the-art embedding models including Nomic, BGE, Snowflake Arctic, IBM Granite, and sentence-transformers models. It runs on CPU and provides both a web interface and API endpoints for generating text embeddings with model selection.
|
8 |
|
9 |
## Key Commands
|
10 |
|
|
|
29 |
## Architecture
|
30 |
|
31 |
The application consists of a single `app.py` file with:
|
32 |
+
- **Model Configuration**: Dictionary of 15+ embedding models with trust_remote_code settings (lines 10-26)
|
33 |
+
- **Model Caching**: Dynamic model loading with caching to avoid reloading (lines 32-42)
|
34 |
+
- **FastAPI App**: Direct HTTP endpoints at `/embed` and `/models` (lines 44, 57-102)
|
35 |
+
- **Embedding Function**: Multi-model wrapper that calls model.encode() (lines 49-53)
|
36 |
+
- **Gradio Interface**: UI with model dropdown selector and API endpoint (lines 106-135)
|
37 |
+
- **Dual Server**: FastAPI mounted with Gradio using uvicorn (lines 214-219)
|
38 |
|
39 |
## Important Configuration Details
|
40 |
|
|
|
49 |
|
50 |
1. **Direct FastAPI endpoint** (no queue):
|
51 |
```bash
|
52 |
+
# List models
|
53 |
+
curl https://ipepe-nomic-embeddings.hf.space/models
|
54 |
+
|
55 |
+
# Generate embedding with specific model
|
56 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
57 |
-H "Content-Type: application/json" \
|
58 |
+
-d '{"text": "your text", "model": "mixedbread-ai/mxbai-embed-large-v1"}'
|
59 |
```
|
60 |
|
61 |
2. **Gradio client** (handles queue automatically):
|
62 |
```python
|
63 |
from gradio_client import Client
|
64 |
client = Client("ipepe/nomic-embeddings")
|
65 |
+
result = client.predict("text to embed", "model-name", api_name="/predict")
|
66 |
```
|
67 |
|
68 |
## Deployment Notes
|
app.py
CHANGED
@@ -6,14 +6,52 @@ from fastapi import FastAPI
|
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Create FastAPI app
|
13 |
fastapi_app = FastAPI()
|
14 |
|
15 |
|
16 |
-
def embed(document: str):
|
|
|
|
|
|
|
17 |
return model.encode(document)
|
18 |
|
19 |
|
@@ -23,20 +61,28 @@ async def embed_text(data: Dict[str, Any]):
|
|
23 |
"""Direct API endpoint for text embedding without queue"""
|
24 |
try:
|
25 |
text = data.get("text", "")
|
|
|
|
|
26 |
if not text:
|
27 |
return JSONResponse(
|
28 |
status_code=400,
|
29 |
content={"error": "No text provided"}
|
30 |
)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Generate embedding
|
33 |
-
embedding =
|
34 |
|
35 |
return JSONResponse(
|
36 |
content={
|
37 |
"embedding": embedding.tolist(),
|
38 |
"dim": len(embedding),
|
39 |
-
"model":
|
40 |
}
|
41 |
)
|
42 |
except Exception as e:
|
@@ -46,9 +92,28 @@ async def embed_text(data: Dict[str, Any]):
|
|
46 |
)
|
47 |
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Create an input text box
|
54 |
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
|
@@ -60,27 +125,38 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
60 |
submit_btn = gr.Button("Generate Embedding", variant="primary")
|
61 |
|
62 |
# Handle both button click and text submission
|
63 |
-
submit_btn.click(embed, inputs=text_input, outputs=output, api_name="predict")
|
64 |
-
text_input.submit(embed, inputs=text_input, outputs=output)
|
65 |
|
66 |
# Add API usage guide
|
67 |
gr.Markdown("## API Usage")
|
68 |
gr.Markdown("""
|
69 |
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
### Direct API Endpoint (No Queue!)
|
72 |
```bash
|
|
|
73 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
74 |
-H "Content-Type: application/json" \
|
75 |
-d '{"text": "Your text to embed goes here"}'
|
|
|
|
|
|
|
|
|
|
|
76 |
```
|
77 |
|
78 |
Response format:
|
79 |
```json
|
80 |
{
|
81 |
"embedding": [0.123, -0.456, ...],
|
82 |
-
"dim":
|
83 |
-
"model": "
|
84 |
}
|
85 |
```
|
86 |
|
@@ -88,9 +164,17 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
88 |
```python
|
89 |
import requests
|
90 |
|
|
|
|
|
|
|
|
|
|
|
91 |
response = requests.post(
|
92 |
"https://ipepe-nomic-embeddings.hf.space/embed",
|
93 |
-
json={
|
|
|
|
|
|
|
94 |
)
|
95 |
result = response.json()
|
96 |
embedding = result["embedding"]
|
@@ -103,22 +187,28 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
103 |
client = Client("ipepe/nomic-embeddings")
|
104 |
result = client.predict(
|
105 |
"Your text to embed goes here",
|
|
|
106 |
api_name="/predict"
|
107 |
)
|
108 |
print(result) # Returns the embedding array
|
109 |
```
|
110 |
|
111 |
-
###
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
""")
|
123 |
|
124 |
if __name__ == '__main__':
|
|
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
9 |
+
# Available models
|
10 |
+
MODELS = {
|
11 |
+
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
|
12 |
+
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
|
13 |
+
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
|
14 |
+
"BAAI/bge-m3": {"trust_remote_code": False},
|
15 |
+
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
|
16 |
+
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
|
17 |
+
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
|
18 |
+
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
|
19 |
+
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
|
20 |
+
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
|
21 |
+
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
|
22 |
+
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
|
23 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
|
24 |
+
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
|
25 |
+
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
|
26 |
+
}
|
27 |
+
|
28 |
+
# Model cache
|
29 |
+
loaded_models = {}
|
30 |
+
current_model_name = "nomic-ai/nomic-embed-text-v1.5"
|
31 |
+
|
32 |
+
# Initialize default model
|
33 |
+
def load_model(model_name: str):
|
34 |
+
global loaded_models
|
35 |
+
if model_name not in loaded_models:
|
36 |
+
config = MODELS.get(model_name, {})
|
37 |
+
loaded_models[model_name] = SentenceTransformer(
|
38 |
+
model_name,
|
39 |
+
trust_remote_code=config.get("trust_remote_code", False),
|
40 |
+
device='cpu'
|
41 |
+
)
|
42 |
+
return loaded_models[model_name]
|
43 |
+
|
44 |
+
# Load default model
|
45 |
+
model = load_model(current_model_name)
|
46 |
|
47 |
# Create FastAPI app
|
48 |
fastapi_app = FastAPI()
|
49 |
|
50 |
|
51 |
+
def embed(document: str, model_name: str = None):
|
52 |
+
if model_name and model_name in MODELS:
|
53 |
+
selected_model = load_model(model_name)
|
54 |
+
return selected_model.encode(document)
|
55 |
return model.encode(document)
|
56 |
|
57 |
|
|
|
61 |
"""Direct API endpoint for text embedding without queue"""
|
62 |
try:
|
63 |
text = data.get("text", "")
|
64 |
+
model_name = data.get("model", current_model_name)
|
65 |
+
|
66 |
if not text:
|
67 |
return JSONResponse(
|
68 |
status_code=400,
|
69 |
content={"error": "No text provided"}
|
70 |
)
|
71 |
|
72 |
+
if model_name not in MODELS:
|
73 |
+
return JSONResponse(
|
74 |
+
status_code=400,
|
75 |
+
content={"error": f"Model '{model_name}' not supported. Available models: {list(MODELS.keys())}"}
|
76 |
+
)
|
77 |
+
|
78 |
# Generate embedding
|
79 |
+
embedding = embed(text, model_name)
|
80 |
|
81 |
return JSONResponse(
|
82 |
content={
|
83 |
"embedding": embedding.tolist(),
|
84 |
"dim": len(embedding),
|
85 |
+
"model": model_name
|
86 |
}
|
87 |
)
|
88 |
except Exception as e:
|
|
|
92 |
)
|
93 |
|
94 |
|
95 |
+
@fastapi_app.get("/models")
|
96 |
+
async def list_models():
|
97 |
+
"""List available embedding models"""
|
98 |
+
return JSONResponse(
|
99 |
+
content={
|
100 |
+
"models": list(MODELS.keys()),
|
101 |
+
"default": current_model_name
|
102 |
+
}
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
with gr.Blocks(title="Multi-Model Text Embeddings") as app:
|
107 |
+
gr.Markdown("# Multi-Model Text Embeddings")
|
108 |
+
gr.Markdown("Generate embeddings for your text using 15+ state-of-the-art embedding models from Nomic, BGE, Snowflake, IBM Granite, and more.")
|
109 |
+
|
110 |
+
# Model selector dropdown
|
111 |
+
model_dropdown = gr.Dropdown(
|
112 |
+
choices=list(MODELS.keys()),
|
113 |
+
value=current_model_name,
|
114 |
+
label="Select Embedding Model",
|
115 |
+
info="Choose the embedding model to use"
|
116 |
+
)
|
117 |
|
118 |
# Create an input text box
|
119 |
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
|
|
|
125 |
submit_btn = gr.Button("Generate Embedding", variant="primary")
|
126 |
|
127 |
# Handle both button click and text submission
|
128 |
+
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
|
129 |
+
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
|
130 |
|
131 |
# Add API usage guide
|
132 |
gr.Markdown("## API Usage")
|
133 |
gr.Markdown("""
|
134 |
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
|
135 |
|
136 |
+
### List Available Models
|
137 |
+
```bash
|
138 |
+
curl https://ipepe-nomic-embeddings.hf.space/models
|
139 |
+
```
|
140 |
+
|
141 |
### Direct API Endpoint (No Queue!)
|
142 |
```bash
|
143 |
+
# Default model (nomic-ai/nomic-embed-text-v1.5)
|
144 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
145 |
-H "Content-Type: application/json" \
|
146 |
-d '{"text": "Your text to embed goes here"}'
|
147 |
+
|
148 |
+
# With specific model
|
149 |
+
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
150 |
+
-H "Content-Type: application/json" \
|
151 |
+
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
|
152 |
```
|
153 |
|
154 |
Response format:
|
155 |
```json
|
156 |
{
|
157 |
"embedding": [0.123, -0.456, ...],
|
158 |
+
"dim": 384,
|
159 |
+
"model": "sentence-transformers/all-MiniLM-L6-v2"
|
160 |
}
|
161 |
```
|
162 |
|
|
|
164 |
```python
|
165 |
import requests
|
166 |
|
167 |
+
# List available models
|
168 |
+
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
|
169 |
+
print(models["models"])
|
170 |
+
|
171 |
+
# Generate embedding with specific model
|
172 |
response = requests.post(
|
173 |
"https://ipepe-nomic-embeddings.hf.space/embed",
|
174 |
+
json={
|
175 |
+
"text": "Your text to embed goes here",
|
176 |
+
"model": "BAAI/bge-small-en-v1.5"
|
177 |
+
}
|
178 |
)
|
179 |
result = response.json()
|
180 |
embedding = result["embedding"]
|
|
|
187 |
client = Client("ipepe/nomic-embeddings")
|
188 |
result = client.predict(
|
189 |
"Your text to embed goes here",
|
190 |
+
"nomic-ai/nomic-embed-text-v1.5", # model selection
|
191 |
api_name="/predict"
|
192 |
)
|
193 |
print(result) # Returns the embedding array
|
194 |
```
|
195 |
|
196 |
+
### Available Models
|
197 |
+
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
|
198 |
+
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
|
199 |
+
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
|
200 |
+
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
|
201 |
+
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
|
202 |
+
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
|
203 |
+
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
|
204 |
+
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
|
205 |
+
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
|
206 |
+
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
|
207 |
+
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
|
208 |
+
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
|
209 |
+
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
|
210 |
+
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
|
211 |
+
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
|
212 |
""")
|
213 |
|
214 |
if __name__ == '__main__':
|