File size: 12,613 Bytes
4b5e136
 
 
 
 
975185d
4b5e136
4dcee19
4b5e136
4dcee19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
975185d
4dcee19
 
 
 
 
 
4b5e136
4dcee19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b327f
975185d
b7b327f
4b5e136
975185d
 
 
 
 
4b5e136
4dcee19
975185d
4b5e136
 
 
 
 
b7b327f
4b5e136
 
 
 
 
 
 
 
b7b327f
 
4b5e136
 
 
 
 
 
 
 
 
 
975185d
 
 
 
 
 
 
 
 
 
4b5e136
 
975185d
 
 
 
 
 
 
 
 
 
 
4b5e136
 
975185d
 
 
 
 
 
 
 
 
 
 
 
 
4b5e136
 
 
 
 
 
 
b7b327f
4b5e136
 
 
 
 
975185d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b5e136
 
 
 
 
 
 
b7b327f
4b5e136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b327f
4b5e136
 
 
 
 
 
 
b7b327f
4b5e136
 
 
 
975185d
 
 
 
4b5e136
 
 
 
 
 
 
 
 
 
975185d
4b5e136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f5253
4b5e136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datasets import load_dataset
import pyarrow.parquet as pq

# Load the dataset using direct parquet file loading
print("Loading dataset...")

# Load directly from Hugging Face using pandas
train_dfs = []
test_dfs = []

# Base URL for the dataset files
base_url = "https://huggingface.co/datasets/irf23/canadian-parliamentary-expenditures/resolve/main/data"

# List of expected files based on the dataset description
print("Loading training data...")
for year in range(2021, 2025):
    for quarter in range(1, 5):
        if year == 2021 and quarter == 1:
            continue  # Data starts from 2021 Q2
        try:
            url = f"{base_url}/train/expenditures-{year}-q{quarter}.parquet"
            df = pd.read_parquet(url)
            train_dfs.append(df)
            print(f"Loaded {year} Q{quarter} train data ({len(df)} records)")
        except Exception as e:
            print(f"Could not load {year} Q{quarter}: {e}")

# Load 2025 test data
print("\nLoading test data...")
for quarter in range(1, 5):
    try:
        url = f"{base_url}/test/expenditures-2025-q{quarter}.parquet"
        df = pd.read_parquet(url)
        test_dfs.append(df)
        print(f"Loaded 2025 Q{quarter} test data ({len(df)} records)")
    except Exception as e:
        print(f"Could not load 2025 Q{quarter}: {e}")

# Combine all dataframes
if train_dfs and test_dfs:
    expenditures_df = pd.concat(train_dfs + test_dfs, ignore_index=True)
elif train_dfs:
    expenditures_df = pd.concat(train_dfs, ignore_index=True)
else:
    # Create dummy data for testing
    print("Creating dummy data for demonstration")
    expenditures_df = pd.DataFrame({
        'Id': ['1', '2', '3'],
        'MemberId': ['m1', 'm2', 'm3'],
        'MemberName': ['John Doe', 'Jane Smith', 'Bob Johnson'],
        'Constituency': ['Riding A', 'Riding B', 'Riding C'],
        'Party': ['Liberal', 'Conservative', 'NDP'],
        'Category': ['Travel', 'Hospitality', 'Contract'],
        'Amount': [1000.0, 2000.0, 1500.0],
        'Description': ['Flight to Ottawa', 'Meeting expenses', 'Consulting'],
        'Location': ['Toronto', 'Vancouver', 'Montreal'],
        'Supplier': ['Air Canada', 'Hotel XYZ', 'Consultant ABC'],
        'PeriodYear': [2024, 2024, 2024],
        'PeriodQuarter': [1, 1, 2],
        'DateIncurred': ['2024-01-15', '2024-02-20', '2024-04-10'],
        'ClaimId': ['c1', 'c2', 'c3'],
        'CreatedAt': ['2024-01-20', '2024-02-25', '2024-04-15'],
        'UpdatedAt': ['2024-01-20', '2024-02-25', '2024-04-15']
    })

# Convert column names to lowercase
expenditures_df.columns = expenditures_df.columns.str.lower()

# Convert data types
expenditures_df['dateincurred'] = pd.to_datetime(expenditures_df['dateincurred'], errors='coerce')
expenditures_df['amount'] = pd.to_numeric(expenditures_df['amount'], errors='coerce')
expenditures_df['periodyear'] = pd.to_numeric(expenditures_df['periodyear'], errors='coerce')
expenditures_df['periodquarter'] = pd.to_numeric(expenditures_df['periodquarter'], errors='coerce')

print(f"\nLoaded {len(expenditures_df)} total expenditure records")
print(f"Columns: {list(expenditures_df.columns)}")

def create_overview_plots(year_filter, party_filter, category_filter):
    # Apply filters
    filtered_df = expenditures_df.copy()
    if year_filter:
        filtered_df = filtered_df[filtered_df['periodyear'].isin(year_filter)]
    if party_filter:
        filtered_df = filtered_df[filtered_df['party'].isin(party_filter)]
    if category_filter:
        filtered_df = filtered_df[filtered_df['category'].isin(category_filter)]
    
    # Calculate metrics
    total_spending = filtered_df['amount'].sum()
    num_records = len(filtered_df)
    avg_expense = filtered_df['amount'].mean() if num_records > 0 else 0
    num_members = filtered_df['memberid'].nunique()
    
    metrics_text = f"""
    ### Key Metrics
    - **Total Spending**: ${total_spending:,.2f}
    - **Number of Records**: {num_records:,}
    - **Average Expense**: ${avg_expense:,.2f}
    - **Active Members**: {num_members}
    """
    
    # Create spending by category pie chart
    if len(filtered_df) > 0:
        category_spending = filtered_df.groupby('category')['amount'].sum().reset_index()
        fig_category = px.pie(
            category_spending,
            values='amount',
            names='category',
            title='Spending by Category'
        )
    else:
        fig_category = px.pie(title='No data for selected filters')
    
    # Create spending by party bar chart
    if len(filtered_df) > 0:
        party_spending = filtered_df.groupby('party')['amount'].sum().sort_values(ascending=False).reset_index()
        fig_party = px.bar(
            party_spending,
            x='party',
            y='amount',
            title='Total Spending by Party',
            labels={'amount': 'Total Amount ($)', 'party': 'Party'}
        )
    else:
        fig_party = px.bar(title='No data for selected filters')
    
    # Create quarterly trend line chart
    if len(filtered_df) > 0:
        quarterly = filtered_df.groupby(['periodyear', 'periodquarter'])['amount'].sum().reset_index()
        quarterly['period'] = quarterly['periodyear'].astype(str) + '-Q' + quarterly['periodquarter'].astype(str)
        fig_trend = px.line(
            quarterly,
            x='period',
            y='amount',
            title='Quarterly Spending Trend',
            labels={'amount': 'Total Amount ($)', 'period': 'Period'},
            markers=True
        )
    else:
        fig_trend = px.line(title='No data for selected filters')
    
    return metrics_text, fig_category, fig_party, fig_trend

def get_top_spenders(n_top, year_filter, party_filter, category_filter):
    # Apply filters
    filtered_df = expenditures_df.copy()
    if year_filter:
        filtered_df = filtered_df[filtered_df['periodyear'].isin(year_filter)]
    if party_filter:
        filtered_df = filtered_df[filtered_df['party'].isin(party_filter)]
    if category_filter:
        filtered_df = filtered_df[filtered_df['category'].isin(category_filter)]
    
    if len(filtered_df) > 0:
        # Get top spenders
        top_spenders = filtered_df.groupby(['membername', 'party'])['amount'].sum().sort_values(ascending=False).head(n_top).reset_index()
        
        fig = px.bar(
            top_spenders,
            x='amount',
            y='membername',
            color='party',
            orientation='h',
            title=f'Top {n_top} Spenders',
            labels={'amount': 'Total Amount ($)', 'membername': 'Member'},
            height=max(400, n_top * 25)
        )
        fig.update_layout(yaxis={'categoryorder': 'total ascending'})
    else:
        fig = px.bar(title='No data for selected filters')
    
    return fig

def analyze_member(member_name):
    if not member_name:
        return "Please select a member", None
    
    member_df = expenditures_df[expenditures_df['membername'] == member_name]
    
    if member_df.empty:
        return "No data found for this member", None
    
    # Calculate metrics
    total = member_df['amount'].sum()
    count = len(member_df)
    avg = member_df['amount'].mean()
    party = member_df['party'].iloc[0]
    
    info = f"""
    ### {member_name} ({party})
    - **Total Expenses**: ${total:,.2f}
    - **Number of Expenses**: {count:,}
    - **Average Expense**: ${avg:,.2f}
    """
    
    # Create category breakdown
    category_breakdown = member_df.groupby('category')['amount'].sum().reset_index()
    fig = px.pie(
        category_breakdown,
        values='amount',
        names='category',
        title=f'Expense Categories for {member_name}'
    )
    
    return info, fig

def search_expenses(member_search, min_amount, max_amount, category_filter):
    filtered_df = expenditures_df.copy()
    
    if member_search:
        filtered_df = filtered_df[filtered_df['membername'].str.contains(member_search, case=False, na=False)]
    
    filtered_df = filtered_df[(filtered_df['amount'] >= min_amount) & (filtered_df['amount'] <= max_amount)]
    
    if category_filter and category_filter != "All":
        filtered_df = filtered_df[filtered_df['category'] == category_filter]
    
    # Get top 100 results
    result = filtered_df.nlargest(100, 'amount')[['membername', 'party', 'category', 'amount', 'description', 'supplier', 'dateincurred']]
    
    return result

# Get unique values for filters
years = sorted(expenditures_df['periodyear'].dropna().unique().tolist())
parties = sorted(expenditures_df['party'].dropna().unique().tolist())
categories = sorted(expenditures_df['category'].dropna().unique().tolist())
member_names = sorted(expenditures_df['membername'].dropna().unique().tolist())

# Create Gradio interface
with gr.Blocks(title="Canadian Parliamentary Expenditures", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🍁 Canadian Parliamentary Expenditures Explorer")
    gr.Markdown("Explore spending data from the Canadian House of Commons (2021-2025)")
    
    # Filters
    with gr.Row():
        year_filter = gr.CheckboxGroup(
            choices=years,
            value=years[-2:] if len(years) >= 2 else years,
            label="Select Years"
        )
        party_filter = gr.CheckboxGroup(
            choices=parties,
            value=parties,
            label="Select Parties"
        )
        category_filter = gr.CheckboxGroup(
            choices=categories,
            value=categories,
            label="Select Categories"
        )
    
    # Overview Tab
    with gr.Tab("Overview"):
        overview_btn = gr.Button("Update Overview", variant="primary")
        metrics_display = gr.Markdown()
        
        with gr.Row():
            category_plot = gr.Plot()
            party_plot = gr.Plot()
        
        trend_plot = gr.Plot()
        
        overview_btn.click(
            create_overview_plots,
            inputs=[year_filter, party_filter, category_filter],
            outputs=[metrics_display, category_plot, party_plot, trend_plot]
        )
    
    # Top Spenders Tab
    with gr.Tab("Top Spenders"):
        n_slider = gr.Slider(10, 50, value=20, step=5, label="Number of top spenders")
        spenders_btn = gr.Button("Show Top Spenders", variant="primary")
        spenders_plot = gr.Plot()
        
        spenders_btn.click(
            get_top_spenders,
            inputs=[n_slider, year_filter, party_filter, category_filter],
            outputs=spenders_plot
        )
    
    # Member Analysis Tab
    with gr.Tab("Member Analysis"):
        member_dropdown = gr.Dropdown(
            choices=member_names,
            label="Select a Member",
            interactive=True
        )
        member_info = gr.Markdown()
        member_plot = gr.Plot()
        
        member_dropdown.change(
            analyze_member,
            inputs=member_dropdown,
            outputs=[member_info, member_plot]
        )
    
    # Search Tab
    with gr.Tab("Search Expenses"):
        with gr.Row():
            search_member = gr.Textbox(label="Member Name (partial match)", placeholder="e.g., Trudeau")
            search_category = gr.Dropdown(
                choices=["All"] + categories,
                value="All",
                label="Category"
            )
        
        with gr.Row():
            min_amount_input = gr.Number(value=0, label="Minimum Amount ($)")
            max_amount_input = gr.Number(value=1000000, label="Maximum Amount ($)")
        
        search_btn = gr.Button("Search", variant="primary")
        results_table = gr.Dataframe(
            headers=["Member", "Party", "Category", "Amount", "Description", "Supplier", "Date"],
            datatype=["str", "str", "str", "number", "str", "str", "str"]
        )
        
        search_btn.click(
            search_expenses,
            inputs=[search_member, min_amount_input, max_amount_input, search_category],
            outputs=results_table
        )
    
    # Footer
    gr.Markdown("""
    ---
    **Data Source**: Canadian House of Commons  
    **Dataset**: [irf23/canadian-parliamentary-expenditures](https://huggingface.co/datasets/irf23/canadian-parliamentary-expenditures)  
    **License**: CC0-1.0 (Public Domain)
    """)
    
    # Load initial overview
    demo.load(
        create_overview_plots,
        inputs=[year_filter, party_filter, category_filter],
        outputs=[metrics_display, category_plot, party_plot, trend_plot]
    )

if __name__ == "__main__":
    demo.launch()