Spaces:
Runtime error
Runtime error
gbarbadillo
commited on
Commit
·
e23754f
1
Parent(s):
42f9313
added app and requirements
Browse files- app.py +100 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
| 5 |
+
import cv2
|
| 6 |
+
from insightface.app import FaceAnalysis
|
| 7 |
+
from insightface.utils import face_align
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
| 11 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 12 |
+
#image_encoder_path = "h94/IP-Adapter/models/image_encoder"
|
| 13 |
+
image_encoder_path = "image_encoder"
|
| 14 |
+
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
if torch.cuda.is_available():
|
| 18 |
+
device = 'cuda'
|
| 19 |
+
torch_dtype = torch.float16
|
| 20 |
+
else:
|
| 21 |
+
device = 'cpu'
|
| 22 |
+
torch_dtype = torch.float32
|
| 23 |
+
print(f'Using device: {device}')
|
| 24 |
+
|
| 25 |
+
noise_scheduler = DDIMScheduler(
|
| 26 |
+
num_train_timesteps=1000,
|
| 27 |
+
beta_start=0.00085,
|
| 28 |
+
beta_end=0.012,
|
| 29 |
+
beta_schedule="scaled_linear",
|
| 30 |
+
clip_sample=False,
|
| 31 |
+
set_alpha_to_one=False,
|
| 32 |
+
steps_offset=1,
|
| 33 |
+
)
|
| 34 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
|
| 35 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 36 |
+
base_model_path,
|
| 37 |
+
torch_dtype=torch_dtype,
|
| 38 |
+
scheduler=noise_scheduler,
|
| 39 |
+
vae=vae,
|
| 40 |
+
feature_extractor=None,
|
| 41 |
+
safety_checker=None
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 50 |
+
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
| 51 |
+
|
| 52 |
+
def generate_images(img_filepath, prompt, n_images=3,
|
| 53 |
+
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry",
|
| 54 |
+
img_prompt_scale=0.5,
|
| 55 |
+
num_inference_steps=30,
|
| 56 |
+
seed=None):
|
| 57 |
+
print(prompt)
|
| 58 |
+
image = cv2.imread(img_filepath)
|
| 59 |
+
faces = app.get(image)
|
| 60 |
+
|
| 61 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 62 |
+
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
| 63 |
+
images = ip_model.generate(
|
| 64 |
+
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds,
|
| 65 |
+
num_samples=n_images, width=512, height=512, num_inference_steps=num_inference_steps, seed=seed,
|
| 66 |
+
scale=img_prompt_scale, # with scale=1 I get weird images
|
| 67 |
+
)
|
| 68 |
+
return [images, Image.fromarray(face_image[..., [2, 1, 0]])]
|
| 69 |
+
|
| 70 |
+
import gradio as gr
|
| 71 |
+
with gr.Blocks() as demo:
|
| 72 |
+
gr.Markdown(
|
| 73 |
+
"""
|
| 74 |
+
# IP-Adapter-FaceID-plus
|
| 75 |
+
Generate images conditioned on a image prompt and a text prompt. Learn more here: https://huggingface.co/h94/IP-Adapter-FaceID
|
| 76 |
+
""")
|
| 77 |
+
with gr.Row():
|
| 78 |
+
with gr.Column():
|
| 79 |
+
demo_inputs = []
|
| 80 |
+
demo_inputs.append(gr.Image(type='filepath', label='image prompt'))
|
| 81 |
+
demo_inputs.append(gr.Textbox(label='text prompt', value='headshot of a man, green moss wall in the background'))
|
| 82 |
+
demo_inputs.append(gr.Slider(maximum=3, minimum=1, value=3, step=1, label='number of images'))
|
| 83 |
+
with gr.Accordion(label='Advanced options', open=False):
|
| 84 |
+
demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry"))
|
| 85 |
+
demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale'))
|
| 86 |
+
btn = gr.Button("Generate")
|
| 87 |
+
|
| 88 |
+
with gr.Column():
|
| 89 |
+
demo_outputs = []
|
| 90 |
+
demo_outputs.append(gr.Gallery(label='generated images'))
|
| 91 |
+
demo_outputs.append(gr.Image(label='detected face', height=224, width=224))
|
| 92 |
+
btn.click(generate_images, inputs=demo_inputs, outputs=demo_outputs)
|
| 93 |
+
sample_prompts = [
|
| 94 |
+
'headshot of a man, green moss wall in the background',
|
| 95 |
+
'linkedin profile picture of a macdonalds worker',
|
| 96 |
+
'LinkedIn profile picture of a beautiful man dressed in a suit, huge explosion in the background',
|
| 97 |
+
]
|
| 98 |
+
gr.Examples(sample_prompts, inputs=demo_inputs[1], label='Sample prompts')
|
| 99 |
+
|
| 100 |
+
demo.launch(share=True, debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
insightface
|
| 2 |
+
onnxruntime
|
| 3 |
+
diffusers==0.22.1
|
| 4 |
+
einops
|
| 5 |
+
accelerate
|
| 6 |
+
git+https://github.com/ironbar/IP-Adapter.git@add-cpu-support
|