Spaces:
Runtime error
Runtime error
| # | |
| # Copyright (C) 2023, Inria | |
| # GRAPHDECO research group, https://team.inria.fr/graphdeco | |
| # All rights reserved. | |
| # | |
| # This software is free for non-commercial, research and evaluation use | |
| # under the terms of the LICENSE.md file. | |
| # | |
| # For inquiries contact [email protected] | |
| # | |
| import os | |
| import sys | |
| import json | |
| from typing import NamedTuple | |
| from pathlib import Path | |
| import imageio | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from plyfile import PlyData, PlyElement | |
| from scene.gaussian_model import BasicPointCloud | |
| from scene.cameras import MiniCam, Camera | |
| from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ | |
| read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text | |
| from utils.graphics import getWorld2View2, focal2fov, fov2focal | |
| from utils.graphics import getProjectionMatrix | |
| from utils.trajectory import get_camerapaths | |
| from utils.sh import SH2RGB | |
| class CameraInfo(NamedTuple): | |
| uid: int | |
| R: np.array | |
| T: np.array | |
| FovY: np.array | |
| FovX: np.array | |
| image: np.array | |
| image_path: str | |
| image_name: str | |
| width: int | |
| height: int | |
| class SceneInfo(NamedTuple): | |
| point_cloud: BasicPointCloud | |
| train_cameras: list | |
| test_cameras: list | |
| preset_cameras: list | |
| nerf_normalization: dict | |
| ply_path: str | |
| def getNerfppNorm(cam_info): | |
| def get_center_and_diag(cam_centers): | |
| cam_centers = np.hstack(cam_centers) | |
| avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) | |
| center = avg_cam_center | |
| dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) | |
| diagonal = np.max(dist) | |
| return center.flatten(), diagonal | |
| cam_centers = [] | |
| for cam in cam_info: | |
| W2C = getWorld2View2(cam.R, cam.T) | |
| C2W = np.linalg.inv(W2C) | |
| cam_centers.append(C2W[:3, 3:4]) | |
| center, diagonal = get_center_and_diag(cam_centers) | |
| radius = diagonal * 1.1 | |
| translate = -center | |
| return {"translate": translate, "radius": radius} | |
| def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder): | |
| cam_infos = [] | |
| for idx, key in enumerate(cam_extrinsics): | |
| sys.stdout.write('\r') | |
| # the exact output you're looking for: | |
| sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics))) | |
| sys.stdout.flush() | |
| extr = cam_extrinsics[key] | |
| intr = cam_intrinsics[extr.camera_id] | |
| height = intr.height | |
| width = intr.width | |
| uid = intr.id | |
| R = np.transpose(qvec2rotmat(extr.qvec)) | |
| T = np.array(extr.tvec) | |
| if intr.model=="SIMPLE_PINHOLE": | |
| focal_length_x = intr.params[0] | |
| FovY = focal2fov(focal_length_x, height) | |
| FovX = focal2fov(focal_length_x, width) | |
| elif intr.model=="PINHOLE": | |
| focal_length_x = intr.params[0] | |
| focal_length_y = intr.params[1] | |
| FovY = focal2fov(focal_length_y, height) | |
| FovX = focal2fov(focal_length_x, width) | |
| else: | |
| assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" | |
| image_path = os.path.join(images_folder, os.path.basename(extr.name)) | |
| image_name = os.path.basename(image_path).split(".")[0] | |
| image = Image.open(image_path) | |
| cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, | |
| image_path=image_path, image_name=image_name, width=width, height=height) | |
| cam_infos.append(cam_info) | |
| sys.stdout.write('\n') | |
| return cam_infos | |
| def fetchPly(path): | |
| plydata = PlyData.read(path) | |
| vertices = plydata['vertex'] | |
| idx = np.random.choice(len(vertices['x']),size=(min(len(vertices['x']), 100_000),),replace=False) | |
| positions = np.vstack([vertices['x'][idx], vertices['y'][idx], vertices['z'][idx]]).T if 'x' in vertices else None | |
| colors = np.vstack([vertices['red'][idx], vertices['green'][idx], vertices['blue'][idx]]).T / 255.0 if 'red' in vertices else None | |
| normals = np.vstack([vertices['nx'][idx], vertices['ny'][idx], vertices['nz'][idx]]).T if 'nx' in vertices else None | |
| return BasicPointCloud(points=positions, colors=colors, normals=normals) | |
| def storePly(path, xyz, rgb): | |
| # Define the dtype for the structured array | |
| dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), | |
| ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), | |
| ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] | |
| normals = np.zeros_like(xyz) | |
| elements = np.empty(xyz.shape[0], dtype=dtype) | |
| attributes = np.concatenate((xyz, normals, rgb), axis=1) | |
| elements[:] = list(map(tuple, attributes)) | |
| # Create the PlyData object and write to file | |
| vertex_element = PlyElement.describe(elements, 'vertex') | |
| ply_data = PlyData([vertex_element]) | |
| ply_data.write(path) | |
| def readColmapSceneInfo(path, images, eval, preset=None, llffhold=8): | |
| try: | |
| cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") | |
| cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") | |
| cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) | |
| cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) | |
| except: | |
| cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") | |
| cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") | |
| cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) | |
| cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) | |
| reading_dir = "images" if images == None else images | |
| cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir)) | |
| cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name) | |
| if eval: | |
| # train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] | |
| # test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] | |
| train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % 5 == 2 or idx % 5 == 0] | |
| test_cam_infos = [c for idx, c in enumerate(cam_infos) if not (idx % 5 == 2 or idx % 5 == 0)] | |
| else: | |
| train_cam_infos = cam_infos | |
| test_cam_infos = [] | |
| nerf_normalization = getNerfppNorm(train_cam_infos) | |
| ply_path = os.path.join(path, "sparse/0/points3D.ply") | |
| bin_path = os.path.join(path, "sparse/0/points3D.bin") | |
| txt_path = os.path.join(path, "sparse/0/points3D.txt") | |
| if not os.path.exists(ply_path): | |
| print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") | |
| try: | |
| xyz, rgb, _ = read_points3D_binary(bin_path) | |
| except: | |
| xyz, rgb, _ = read_points3D_text(txt_path) | |
| storePly(ply_path, xyz, rgb) | |
| try: | |
| pcd = fetchPly(ply_path) | |
| except: | |
| pcd = None | |
| if preset: | |
| preset_cam_infos = readCamerasFromPreset('/home/chung/workspace/gaussian-splatting/poses_supplementary', f"{preset}.json") | |
| else: | |
| preset_cam_infos = None | |
| scene_info = SceneInfo(point_cloud=pcd, | |
| train_cameras=train_cam_infos, | |
| test_cameras=test_cam_infos, | |
| preset_cameras=preset_cam_infos, | |
| nerf_normalization=nerf_normalization, | |
| ply_path=ply_path) | |
| return scene_info | |
| def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): | |
| cam_infos = [] | |
| with open(os.path.join(path, transformsfile)) as json_file: | |
| contents = json.load(json_file) | |
| fovx = contents["camera_angle_x"] | |
| frames = contents["frames"] | |
| for idx, frame in enumerate(frames): | |
| cam_name = os.path.join(path, frame["file_path"] + extension) | |
| # NeRF 'transform_matrix' is a camera-to-world transform | |
| c2w = np.array(frame["transform_matrix"]) | |
| # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
| c2w[:3, 1:3] *= -1 | |
| # get the world-to-camera transform and set R, T | |
| w2c = np.linalg.inv(c2w) | |
| R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code | |
| T = w2c[:3, 3] | |
| image_path = os.path.join(path, cam_name) | |
| image_name = Path(cam_name).stem | |
| image = Image.open(image_path) | |
| # if os.path.exists(os.path.join(path, frame["file_path"].replace("/train/", "/depths_train/")+'.npy')): | |
| # depth = np.load(os.path.join(path, frame["file_path"].replace("/train/", "/depths_train/")+'.npy')) | |
| # if os.path.exists(os.path.join(path, frame["file_path"].replace("/train/", "/masks_train/")+'.png')): | |
| # mask = imageio.v3.imread(os.path.join(path, frame["file_path"].replace("/train/", "/masks_train/")+'.png'))[:,:,0]/255. | |
| # else: | |
| # mask = np.ones_like(depth) | |
| # final_depth = depth*mask | |
| # else: | |
| # final_depth = None | |
| im_data = np.array(image.convert("RGBA")) | |
| bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) | |
| norm_data = im_data / 255.0 | |
| arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) | |
| image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") | |
| fovy = focal2fov(fov2focal(fovx, image.size[1]), image.size[0]) | |
| FovY = fovy | |
| FovX = fovx | |
| cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image, | |
| image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1])) | |
| return cam_infos | |
| def readCamerasFromPreset(path, transformsfile): | |
| cam_infos = [] | |
| with open(os.path.join(path, transformsfile)) as json_file: | |
| contents = json.load(json_file) | |
| FOV = contents["camera_angle_x"]*1.2 | |
| frames = contents["frames"] | |
| for idx, frame in enumerate(frames): | |
| # NeRF 'transform_matrix' is a camera-to-world transform | |
| c2w = np.array(frame["transform_matrix"]) | |
| # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
| c2w[:3, 1:3] *= -1 | |
| # get the world-to-camera transform and set R, T | |
| w2c = np.linalg.inv(np.concatenate((c2w, np.array([0,0,0,1]).reshape(1,4)), axis=0)) | |
| R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code | |
| T = w2c[:3, 3] | |
| # R = c2w[:3,:3] | |
| # T = - np.transpose(R).dot(c2w[:3,3]) | |
| image = Image.fromarray(np.zeros((512,512)), "RGB") | |
| FovY = focal2fov(fov2focal(FOV, 512), image.size[0]) | |
| FovX = focal2fov(fov2focal(FOV, 512), image.size[1]) | |
| # FovX, FovY = contents["camera_angle_x"], contents["camera_angle_x"] | |
| cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image, | |
| image_path='None', image_name='None', width=image.size[1], height=image.size[0])) | |
| return cam_infos | |
| def readNerfSyntheticInfo(path, white_background, eval, preset=None, extension=".png"): | |
| print("Reading Training Transforms") | |
| train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension) | |
| print("Reading Test Transforms") | |
| test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension) | |
| if preset: | |
| preset_cam_infos = readCamerasFromPreset('/home/chung/workspace/gaussian-splatting/poses_supplementary', f"{preset}.json") | |
| else: | |
| preset_cam_infos = None | |
| if not eval: | |
| train_cam_infos.extend(test_cam_infos) | |
| test_cam_infos = [] | |
| nerf_normalization = getNerfppNorm(train_cam_infos) | |
| ply_path = os.path.join(path, "points3d.ply") | |
| if not os.path.exists(ply_path): | |
| # Since this data set has no colmap data, we start with random points | |
| num_pts = 100_000 | |
| print(f"Generating random point cloud ({num_pts})...") | |
| # We create random points inside the bounds of the synthetic Blender scenes | |
| xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 | |
| shs = np.random.random((num_pts, 3)) / 255.0 | |
| pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))) | |
| storePly(ply_path, xyz, SH2RGB(shs) * 255) | |
| try: | |
| pcd = fetchPly(ply_path) | |
| except: | |
| pcd = None | |
| scene_info = SceneInfo(point_cloud=pcd, | |
| train_cameras=train_cam_infos, | |
| test_cameras=test_cam_infos, | |
| preset_cameras=preset_cam_infos, | |
| nerf_normalization=nerf_normalization, | |
| ply_path=ply_path) | |
| return scene_info | |
| def loadCamerasFromData(traindata, white_background): | |
| cameras = [] | |
| fovx = traindata["camera_angle_x"] | |
| frames = traindata["frames"] | |
| for idx, frame in enumerate(frames): | |
| # NeRF 'transform_matrix' is a camera-to-world transform | |
| c2w = np.array(frame["transform_matrix"]) | |
| # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
| c2w[:3, 1:3] *= -1 | |
| # get the world-to-camera transform and set R, T | |
| w2c = np.linalg.inv(c2w) | |
| R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code | |
| T = w2c[:3, 3] | |
| image = frame["image"] if "image" in frame else None | |
| im_data = np.array(image.convert("RGBA")) | |
| bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) | |
| norm_data = im_data / 255.0 | |
| arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) | |
| image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") | |
| loaded_mask = np.ones_like(norm_data[:, :, 3:4]) | |
| fovy = focal2fov(fov2focal(fovx, image.size[1]), image.size[0]) | |
| FovY = fovy | |
| FovX = fovx | |
| image = torch.Tensor(arr).permute(2,0,1) | |
| loaded_mask = None #torch.Tensor(loaded_mask).permute(2,0,1) | |
| ### torch로 바꿔야함 | |
| cameras.append(Camera(colmap_id=idx, R=R, T=T, FoVx=FovX, FoVy=FovY, image=image, | |
| gt_alpha_mask=loaded_mask, image_name='', uid=idx, data_device='cuda')) | |
| return cameras | |
| def loadCameraPreset(traindata, presetdata): | |
| cam_infos = {} | |
| ## camera setting (for H, W and focal) | |
| fovx = traindata["camera_angle_x"] * 1.2 | |
| W, H = traindata["frames"][0]["image"].size | |
| # W, H = traindata["W"], traindata["H"] | |
| for camkey in presetdata: | |
| cam_infos[camkey] = [] | |
| for idx, frame in enumerate(presetdata[camkey]["frames"]): | |
| # NeRF 'transform_matrix' is a camera-to-world transform | |
| c2w = np.array(frame["transform_matrix"]) | |
| # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) | |
| c2w[:3, 1:3] *= -1 | |
| # get the world-to-camera transform and set R, T | |
| w2c = np.linalg.inv(c2w) | |
| R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code | |
| T = w2c[:3, 3] | |
| fovy = focal2fov(fov2focal(fovx, W), H) | |
| FovY = fovy | |
| FovX = fovx | |
| znear, zfar = 0.01, 100 | |
| world_view_transform = torch.tensor(getWorld2View2(R, T, np.array([0.0, 0.0, 0.0]), 1.0)).transpose(0, 1).cuda() | |
| projection_matrix = getProjectionMatrix(znear=znear, zfar=zfar, fovX=FovX, fovY=FovY).transpose(0,1).cuda() | |
| full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0) | |
| cam_infos[camkey].append(MiniCam(width=W, height=H, fovy=FovY, fovx=FovX, znear=znear, zfar=zfar, | |
| world_view_transform=world_view_transform, full_proj_transform=full_proj_transform)) | |
| return cam_infos | |
| def readDataInfo(traindata, white_background): | |
| print("Reading Training Transforms") | |
| train_cameras = loadCamerasFromData(traindata, white_background) | |
| preset_minicams = loadCameraPreset(traindata, presetdata=get_camerapaths()) | |
| # if not eval: | |
| # train_cam_infos.extend(test_cam_infos) | |
| # test_cam_infos = [] | |
| nerf_normalization = getNerfppNorm(train_cameras) | |
| pcd = BasicPointCloud(points=traindata['pcd_points'].T, colors=traindata['pcd_colors'], normals=None) | |
| scene_info = SceneInfo(point_cloud=pcd, | |
| train_cameras=train_cameras, | |
| test_cameras=[], | |
| preset_cameras=preset_minicams, | |
| nerf_normalization=nerf_normalization, | |
| ply_path='') | |
| return scene_info | |
| sceneLoadTypeCallbacks = { | |
| "Colmap": readColmapSceneInfo, | |
| "Blender" : readNerfSyntheticInfo | |
| } |