Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import subprocess
|
|
|
|
|
4 |
|
|
|
|
|
5 |
subprocess.run(["git", "clone", "https://huggingface.co/irotem98/edge_vlm"])
|
|
|
6 |
subprocess.run(["pip", "install", "-r", "edge_vlm/requirements.txt"])
|
7 |
subprocess.run(["pip", "install", "sentencepiece"])
|
8 |
|
|
|
|
|
9 |
source_dir = "edge_vlm"
|
10 |
destination_dir = "."
|
11 |
|
@@ -13,44 +20,51 @@ for item in os.listdir(source_dir):
|
|
13 |
source_item = os.path.join(source_dir, item)
|
14 |
destination_item = os.path.join(destination_dir, item)
|
15 |
|
16 |
-
# If it's a directory, copy it recursively
|
17 |
if os.path.isdir(source_item):
|
18 |
if os.path.exists(destination_item):
|
19 |
-
shutil.rmtree(destination_item)
|
20 |
shutil.copytree(source_item, destination_item)
|
21 |
else:
|
22 |
-
# If it's a file, copy it
|
23 |
shutil.copy(source_item, destination_item)
|
24 |
|
|
|
|
|
25 |
# Now import the model from the copied files
|
26 |
from model import MoondreamModel
|
27 |
-
import torch
|
28 |
-
import gradio as gr
|
29 |
|
30 |
# Load the model and tokenizer
|
|
|
31 |
model = MoondreamModel.load_model()
|
|
|
|
|
32 |
tokenizer = MoondreamModel.load_tokenizer()
|
|
|
33 |
|
34 |
# Define the default question
|
35 |
default_question = "Describe the image."
|
36 |
|
37 |
# Function to handle image and return generated caption
|
38 |
def generate_caption_with_default(image):
|
39 |
-
|
40 |
preprocessed_image = MoondreamModel.preprocess_image(image)
|
|
|
41 |
|
42 |
-
|
43 |
caption = MoondreamModel.generate_caption(model, preprocessed_image, tokenizer)
|
|
|
44 |
|
45 |
return caption
|
46 |
|
|
|
|
|
47 |
interface = gr.Interface(
|
48 |
fn=generate_caption_with_default,
|
49 |
-
inputs=gr.Image(type="pil", label="Upload an Image"),
|
50 |
outputs="text",
|
51 |
title="Image Caption Generator",
|
52 |
description=f"The default question is: '{default_question}'. Upload an image to generate a description."
|
53 |
)
|
54 |
|
55 |
# Launch the interface
|
56 |
-
interface
|
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import subprocess
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
# Clone and install dependencies
|
8 |
+
print("Cloning the repository...")
|
9 |
subprocess.run(["git", "clone", "https://huggingface.co/irotem98/edge_vlm"])
|
10 |
+
print("Installing dependencies...")
|
11 |
subprocess.run(["pip", "install", "-r", "edge_vlm/requirements.txt"])
|
12 |
subprocess.run(["pip", "install", "sentencepiece"])
|
13 |
|
14 |
+
# Copy all files from edge_vlm to current directory
|
15 |
+
print("Copying files...")
|
16 |
source_dir = "edge_vlm"
|
17 |
destination_dir = "."
|
18 |
|
|
|
20 |
source_item = os.path.join(source_dir, item)
|
21 |
destination_item = os.path.join(destination_dir, item)
|
22 |
|
|
|
23 |
if os.path.isdir(source_item):
|
24 |
if os.path.exists(destination_item):
|
25 |
+
shutil.rmtree(destination_item)
|
26 |
shutil.copytree(source_item, destination_item)
|
27 |
else:
|
|
|
28 |
shutil.copy(source_item, destination_item)
|
29 |
|
30 |
+
print("Files copied successfully.")
|
31 |
+
|
32 |
# Now import the model from the copied files
|
33 |
from model import MoondreamModel
|
|
|
|
|
34 |
|
35 |
# Load the model and tokenizer
|
36 |
+
print("Loading model...")
|
37 |
model = MoondreamModel.load_model()
|
38 |
+
print("Model loaded.")
|
39 |
+
print("Loading tokenizer...")
|
40 |
tokenizer = MoondreamModel.load_tokenizer()
|
41 |
+
print("Tokenizer loaded.")
|
42 |
|
43 |
# Define the default question
|
44 |
default_question = "Describe the image."
|
45 |
|
46 |
# Function to handle image and return generated caption
|
47 |
def generate_caption_with_default(image):
|
48 |
+
print("Preprocessing image...")
|
49 |
preprocessed_image = MoondreamModel.preprocess_image(image)
|
50 |
+
print("Image preprocessed.")
|
51 |
|
52 |
+
print("Generating caption...")
|
53 |
caption = MoondreamModel.generate_caption(model, preprocessed_image, tokenizer)
|
54 |
+
print("Caption generated.")
|
55 |
|
56 |
return caption
|
57 |
|
58 |
+
# Create Gradio interface
|
59 |
+
print("Setting up Gradio interface...")
|
60 |
interface = gr.Interface(
|
61 |
fn=generate_caption_with_default,
|
62 |
+
inputs=gr.Image(type="pil", label="Upload an Image"),
|
63 |
outputs="text",
|
64 |
title="Image Caption Generator",
|
65 |
description=f"The default question is: '{default_question}'. Upload an image to generate a description."
|
66 |
)
|
67 |
|
68 |
# Launch the interface
|
69 |
+
print("Launching interface...")
|
70 |
+
interface.launch()
|