Spaces:
Runtime error
Runtime error
File size: 4,569 Bytes
90b6afe 47a1b08 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 00f7e20 50d0879 20d069f 50d0879 20d069f 38264cb 20d069f 50d0879 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 26208b0 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 50d0879 00f7e20 20d069f 00f7e20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
# Store the received masks for return
received_tar_mask = tar_mask.copy()
received_ref_mask = ref_mask.copy()
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3)
y1, y2, x1, x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :]
ref_mask = ref_mask[y1:y2, x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zoom in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2)
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1, y2, x1, x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2, x1:x2, :]
tar_mask = tar_mask[y1:y2, x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych)
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
edited_image = edited_image.crop((left, 0, width, height))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask]
else:
return [return_ref_mask, show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask] |