Spaces:
Paused
Paused
File size: 18,375 Bytes
38264cb 20d069f 7ea451b 8f1b38f 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 7ea451b 8f1b38f 38264cb 7ea451b 38264cb 50d0879 38264cb 8f1b38f 38264cb 7ea451b 38264cb 50d0879 38264cb 50d0879 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 8f1b38f 38264cb 50d0879 8f1b38f 60464bd 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 38264cb 50d0879 3606138 38264cb 3606138 20d069f 38264cb 20d069f 38264cb 20d069f 90b6afe 47a1b08 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 50d0879 20d069f 38264cb 20d069f 50d0879 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 26208b0 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 50d0879 e921222 50d0879 38264cb 20d069f 50d0879 a19d671 0cb65de 20d069f 50d0879 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 20d069f 38264cb 50d0879 38264cb 50d0879 3e44325 20d069f 38264cb 20d069f 3606138 20d069f 38264cb 20d069f 50d0879 38264cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# app.py — storage-safe + HF Hub friendly
import os
# ---------- ENV & THREADS (set BEFORE importing numpy/torch) ----------
# Accept any of these names from Space Settings, prefer the standard one:
omp_val = (
os.getenv("OMP_NUM_THREADS")
or os.getenv("OMP-NUM-THREADS")
or os.getenv("OMPNUMTHREADS")
or "2"
)
try:
omp_val = str(int(omp_val))
except Exception:
omp_val = "2"
os.environ["OMP_NUM_THREADS"] = omp_val # must be a positive integer string
# Send all caches to persistent storage
os.environ.setdefault("HF_HOME", "/data/.huggingface")
os.environ.setdefault("HF_HUB_CACHE", "/data/.huggingface/hub")
os.environ.setdefault("HF_DATASETS_CACHE", "/data/.huggingface/datasets")
# NOTE: TRANSFORMERS_CACHE is deprecated; using HF_HOME instead.
# Disable Xet path, enable fast transfer
os.environ.setdefault("HF_HUB_DISABLE_XET", "1")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
# ---------- NOW safe to import heavy libs ----------
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw
# Optional: align PyTorch thread pools with OMP setting
try:
torch.set_num_threads(int(omp_val))
torch.set_num_interop_threads(1)
except Exception:
pass
# ---------- HUB IMPORTS ----------
from huggingface_hub import snapshot_download, hf_hub_download # noqa: E402
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline # noqa: E402
import math # noqa: E402
from utils.utils import ( # noqa: E402
get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
)
# Optional editable installs ONLY if import fails (prefer requirements.txt)
def _ensure_local_editable(pkg_name, rel_path):
try:
__import__(pkg_name)
except ImportError:
os.system(f"python -m pip install -e {rel_path}")
_ensure_local_editable("segment_anything", "segment_anything")
_ensure_local_editable("GroundingDINO", "GroundingDINO")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
import torchvision # noqa: E402
from GroundingDINO.groundingdino.util.inference import load_model # noqa: E402
# Use the stable SAM API (avoids build_sam import error)
from segment_anything import sam_model_registry, SamPredictor # noqa: E402
import spaces # noqa: E402
import GroundingDINO.groundingdino.datasets.transforms as T # noqa: E402
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # noqa: E402
# ---------- PATHS ----------
PERSIST_ROOT = "/data"
MODELS_DIR = os.path.join(PERSIST_ROOT, "models")
CKPT_DIR = os.path.join(PERSIST_ROOT, "checkpoints")
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(CKPT_DIR, exist_ok=True)
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "groundingdino_swinb_cogcoor.pth")
# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "sam_vit_h_4b8939.pth")
# ---------- AUTH TOKEN ----------
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
# ---------- DOWNLOAD CHECKPOINTS (single files) ----------
# GroundingDINO ckpt (single file)
if not os.path.exists(GROUNDING_DINO_CHECKPOINT_PATH):
g_dino_file = hf_hub_download(
repo_id="ShilongLiu/GroundingDINO",
filename="groundingdino_swinb_cogcoor.pth",
local_dir=CKPT_DIR,
token=hf_token,
)
if g_dino_file != GROUNDING_DINO_CHECKPOINT_PATH:
os.replace(g_dino_file, GROUNDING_DINO_CHECKPOINT_PATH)
# SAM ckpt (single file)
if not os.path.exists(SAM_CHECKPOINT_PATH):
sam_file = hf_hub_download(
repo_id="spaces/mrtlive/segment-anything-model",
filename="sam_vit_h_4b8939.pth",
local_dir=CKPT_DIR,
token=hf_token,
)
if sam_file != SAM_CHECKPOINT_PATH:
os.replace(sam_file, SAM_CHECKPOINT_PATH)
# ---------- DOWNLOAD MODELS (filtered snapshots into /data) ----------
FILL_DIR = os.path.join(MODELS_DIR, "FLUX.1-Fill-dev")
REDUX_DIR = os.path.join(MODELS_DIR, "FLUX.1-Redux-dev")
LORA_DIR = os.path.join(MODELS_DIR, "insertanything_model")
for path in (FILL_DIR, REDUX_DIR, LORA_DIR):
os.makedirs(path, exist_ok=True)
# Only pull what we need (weights/configs). Keep symlinks to avoid copies.
if not os.listdir(FILL_DIR):
snapshot_download(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
local_dir=FILL_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
token=hf_token,
)
if not os.listdir(REDUX_DIR):
snapshot_download(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
local_dir=REDUX_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
token=hf_token,
)
if not os.listdir(LORA_DIR):
snapshot_download(
repo_id="WensongSong/Insert-Anything",
local_dir=LORA_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt"],
token=hf_token,
)
# ---------- BUILD MODELS ----------
# GroundingDINO
groundingdino_model = load_model(
model_config_path=GROUNDING_DINO_CONFIG_PATH,
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH,
device="cuda"
)
# SAM + Predictor (registry API)
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
# Diffusers
dtype = torch.bfloat16
size = (768, 768)
pipe = FluxFillPipeline.from_pretrained(
FILL_DIR,
torch_dtype=dtype
).to("cuda")
pipe.load_lora_weights(
os.path.join(LORA_DIR, "20250321_steps5000_pytorch_lora_weights.safetensors")
)
redux = FluxPriorReduxPipeline.from_pretrained(REDUX_DIR).to(dtype=dtype).to("cuda")
# ---------- APP LOGIC ----------
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# filter output
filt_mask = logits.max(dim=1)[0] > box_threshold
logits_filt = logits[filt_mask]
boxes_filt = boxes[filt_mask]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
pred_phrases, scores = [], []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})" if with_logits else pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def get_mask(image, label):
global groundingdino_model, sam_predictor
image_pil = image.convert("RGB")
transformed_image = transform_image(image_pil)
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, label
)
W, H = image_pil.size
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.8).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
image_np = np.array(image_pil)
sam_predictor.set_image(image_np)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image_np.shape[:2]
).to("cuda")
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
result_mask = masks[0][0].cpu().numpy()
return Image.fromarray(result_mask)
def create_highlighted_mask(image_np, mask_np, alpha=0.5, gray_value=128):
if mask_np.max() <= 1.0:
mask_np = (mask_np * 255).astype(np.uint8)
mask_bool = mask_np > 128
image_float = image_np.astype(np.float32)
gray_overlay = np.full_like(image_float, gray_value, dtype=np.float32)
result = image_float.copy()
result[mask_bool] = (1 - alpha) * image_float[mask_bool] + alpha * gray_overlay[mask_bool]
return result.astype(np.uint8)
# ---------- EXAMPLES ----------
ref_dir = './examples/ref_image'
ref_mask_dir = './examples/ref_mask'
image_dir = './examples/source_image'
image_mask_dir = './examples/source_mask'
ref_list = sorted([os.path.join(ref_dir, f) for f in os.listdir(ref_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
ref_mask_list = sorted([os.path.join(ref_mask_dir, f) for f in os.listdir(ref_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_list = sorted([os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_mask_list = sorted([os.path.join(image_mask_dir, f) for f in os.listdir(image_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3)
y1, y2, x1, x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :]
ref_mask = ref_mask[y1:y2, x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zoom in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2)
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1, y2, x1, x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2, x1:x2, :]
tar_mask = tar_mask[y1:y2, x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych)
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
edited_image = edited_image.crop((left, 0, width, height))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [show_diptych_ref_tar, edited_image]
else:
return [return_ref_mask, show_diptych_ref_tar, edited_image]
def update_ui(option):
if option == "Draw Mask":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Insert-Anything")
gr.Markdown("### Make sure to select the correct mask button!!")
gr.Markdown("### Click the output image to toggle between Diptych and final results!!")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=False, interactive=True)
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil",
layers=False, brush=False, eraser=False)
with gr.Row():
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option",
value="Upload with Mask")
with gr.Row():
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=False, interactive=True)
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil",
layers=False, brush=False, eraser=False)
with gr.Row():
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"],
label="Reference Mask Input Option", value="Upload with Mask")
with gr.Row():
text_prompt = gr.Textbox(label="Label",
placeholder="Enter the category of the reference object, e.g., car, dress, toy, etc.")
with gr.Column(scale=1):
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=695, columns=1)
with gr.Accordion("Advanced Option", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=999_999_999, step=1, value=666)
gr.Markdown("### Guidelines")
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
gr.Markdown(" Draw Mask means manually drawing a mask on the original image.")
gr.Markdown(" Upload with Mask means uploading a mask file.")
gr.Markdown(" Label to Mask means simply inputting a label to automatically extract the mask and obtain the result.")
run_local_button = gr.Button(value="Run")
# examples
num_examples = len(image_list)
for i in range(num_examples):
with gr.Row():
if i == 0:
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
else:
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
if i < num_examples - 1:
gr.HTML("<hr>")
run_local_button.click(
fn=run_local,
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt],
outputs=[baseline_gallery]
)
demo.launch()
|