File size: 18,375 Bytes
38264cb
 
20d069f
7ea451b
8f1b38f
 
 
 
 
 
 
 
38264cb
8f1b38f
38264cb
8f1b38f
 
38264cb
 
 
 
 
8f1b38f
38264cb
 
 
 
 
8f1b38f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38264cb
 
 
 
 
 
 
 
7ea451b
8f1b38f
38264cb
 
 
 
 
7ea451b
38264cb
 
50d0879
 
 
 
38264cb
 
8f1b38f
 
38264cb
 
 
7ea451b
38264cb
 
 
 
 
 
50d0879
 
 
38264cb
50d0879
 
 
38264cb
 
 
 
 
 
 
 
8f1b38f
38264cb
 
 
 
 
8f1b38f
 
38264cb
 
 
8f1b38f
38264cb
 
 
 
 
8f1b38f
 
38264cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50d0879
8f1b38f
 
60464bd
50d0879
 
38264cb
 
 
 
 
 
 
 
 
 
 
 
50d0879
38264cb
 
 
 
50d0879
 
 
 
 
 
 
 
 
 
 
 
38264cb
50d0879
 
 
 
 
38264cb
50d0879
 
38264cb
 
 
50d0879
 
 
 
38264cb
50d0879
38264cb
 
50d0879
 
 
 
 
 
 
 
 
 
 
 
 
38264cb
50d0879
 
 
 
 
 
38264cb
50d0879
 
38264cb
 
50d0879
38264cb
 
50d0879
 
 
 
 
 
 
 
38264cb
50d0879
 
3606138
 
 
 
 
 
 
38264cb
3606138
20d069f
 
38264cb
 
 
 
 
20d069f
38264cb
 
 
 
20d069f
 
90b6afe
47a1b08
20d069f
50d0879
 
20d069f
50d0879
 
20d069f
 
50d0879
 
 
 
 
20d069f
50d0879
 
20d069f
 
 
 
 
 
50d0879
 
20d069f
 
 
 
 
 
 
 
50d0879
 
 
 
20d069f
 
38264cb
 
 
 
 
20d069f
50d0879
20d069f
38264cb
20d069f
 
 
 
 
38264cb
20d069f
 
 
38264cb
 
 
20d069f
 
38264cb
 
20d069f
 
 
 
 
 
 
 
 
 
 
 
 
 
38264cb
20d069f
 
38264cb
26208b0
 
20d069f
 
 
 
 
 
 
 
 
 
 
 
 
38264cb
20d069f
 
 
 
38264cb
20d069f
 
38264cb
20d069f
 
50d0879
e921222
50d0879
38264cb
 
20d069f
 
 
 
 
 
 
 
 
50d0879
a19d671
0cb65de
20d069f
 
50d0879
20d069f
38264cb
 
 
 
 
20d069f
38264cb
 
20d069f
 
38264cb
 
 
 
 
20d069f
 
38264cb
 
50d0879
38264cb
 
50d0879
 
3e44325
20d069f
38264cb
20d069f
 
3606138
 
 
20d069f
 
 
38264cb
20d069f
 
 
 
 
 
 
 
 
 
 
 
 
 
50d0879
 
38264cb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# app.py — storage-safe + HF Hub friendly

import os

# ---------- ENV & THREADS (set BEFORE importing numpy/torch) ----------
# Accept any of these names from Space Settings, prefer the standard one:
omp_val = (
    os.getenv("OMP_NUM_THREADS")
    or os.getenv("OMP-NUM-THREADS")
    or os.getenv("OMPNUMTHREADS")
    or "2"
)
try:
    omp_val = str(int(omp_val))
except Exception:
    omp_val = "2"
os.environ["OMP_NUM_THREADS"] = omp_val  # must be a positive integer string

# Send all caches to persistent storage
os.environ.setdefault("HF_HOME", "/data/.huggingface")
os.environ.setdefault("HF_HUB_CACHE", "/data/.huggingface/hub")
os.environ.setdefault("HF_DATASETS_CACHE", "/data/.huggingface/datasets")
# NOTE: TRANSFORMERS_CACHE is deprecated; using HF_HOME instead.

# Disable Xet path, enable fast transfer
os.environ.setdefault("HF_HUB_DISABLE_XET", "1")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")

# ---------- NOW safe to import heavy libs ----------
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw

# Optional: align PyTorch thread pools with OMP setting
try:
    torch.set_num_threads(int(omp_val))
    torch.set_num_interop_threads(1)
except Exception:
    pass

# ---------- HUB IMPORTS ----------
from huggingface_hub import snapshot_download, hf_hub_download  # noqa: E402
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline  # noqa: E402

import math  # noqa: E402
from utils.utils import (  # noqa: E402
    get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
)

# Optional editable installs ONLY if import fails (prefer requirements.txt)
def _ensure_local_editable(pkg_name, rel_path):
    try:
        __import__(pkg_name)
    except ImportError:
        os.system(f"python -m pip install -e {rel_path}")

_ensure_local_editable("segment_anything", "segment_anything")
_ensure_local_editable("GroundingDINO", "GroundingDINO")

sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))

import torchvision  # noqa: E402
from GroundingDINO.groundingdino.util.inference import load_model  # noqa: E402
# Use the stable SAM API (avoids build_sam import error)
from segment_anything import sam_model_registry, SamPredictor  # noqa: E402
import spaces  # noqa: E402
import GroundingDINO.groundingdino.datasets.transforms as T  # noqa: E402
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap  # noqa: E402

# ---------- PATHS ----------
PERSIST_ROOT = "/data"
MODELS_DIR = os.path.join(PERSIST_ROOT, "models")
CKPT_DIR = os.path.join(PERSIST_ROOT, "checkpoints")
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(CKPT_DIR, exist_ok=True)

# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "groundingdino_swinb_cogcoor.pth")

# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "sam_vit_h_4b8939.pth")

# ---------- AUTH TOKEN ----------
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")

# ---------- DOWNLOAD CHECKPOINTS (single files) ----------
# GroundingDINO ckpt (single file)
if not os.path.exists(GROUNDING_DINO_CHECKPOINT_PATH):
    g_dino_file = hf_hub_download(
        repo_id="ShilongLiu/GroundingDINO",
        filename="groundingdino_swinb_cogcoor.pth",
        local_dir=CKPT_DIR,
        token=hf_token,
    )
    if g_dino_file != GROUNDING_DINO_CHECKPOINT_PATH:
        os.replace(g_dino_file, GROUNDING_DINO_CHECKPOINT_PATH)

# SAM ckpt (single file)
if not os.path.exists(SAM_CHECKPOINT_PATH):
    sam_file = hf_hub_download(
        repo_id="spaces/mrtlive/segment-anything-model",
        filename="sam_vit_h_4b8939.pth",
        local_dir=CKPT_DIR,
        token=hf_token,
    )
    if sam_file != SAM_CHECKPOINT_PATH:
        os.replace(sam_file, SAM_CHECKPOINT_PATH)

# ---------- DOWNLOAD MODELS (filtered snapshots into /data) ----------
FILL_DIR = os.path.join(MODELS_DIR, "FLUX.1-Fill-dev")
REDUX_DIR = os.path.join(MODELS_DIR, "FLUX.1-Redux-dev")
LORA_DIR = os.path.join(MODELS_DIR, "insertanything_model")
for path in (FILL_DIR, REDUX_DIR, LORA_DIR):
    os.makedirs(path, exist_ok=True)

# Only pull what we need (weights/configs). Keep symlinks to avoid copies.
if not os.listdir(FILL_DIR):
    snapshot_download(
        repo_id="black-forest-labs/FLUX.1-Fill-dev",
        local_dir=FILL_DIR,
        local_dir_use_symlinks=True,
        allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
        token=hf_token,
    )

if not os.listdir(REDUX_DIR):
    snapshot_download(
        repo_id="black-forest-labs/FLUX.1-Redux-dev",
        local_dir=REDUX_DIR,
        local_dir_use_symlinks=True,
        allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
        token=hf_token,
    )

if not os.listdir(LORA_DIR):
    snapshot_download(
        repo_id="WensongSong/Insert-Anything",
        local_dir=LORA_DIR,
        local_dir_use_symlinks=True,
        allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt"],
        token=hf_token,
    )

# ---------- BUILD MODELS ----------
# GroundingDINO
groundingdino_model = load_model(
    model_config_path=GROUNDING_DINO_CONFIG_PATH,
    model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH,
    device="cuda"
)

# SAM + Predictor (registry API)
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)

# Diffusers
dtype = torch.bfloat16
size = (768, 768)

pipe = FluxFillPipeline.from_pretrained(
    FILL_DIR,
    torch_dtype=dtype
).to("cuda")

pipe.load_lora_weights(
    os.path.join(LORA_DIR, "20250321_steps5000_pytorch_lora_weights.safetensors")
)

redux = FluxPriorReduxPipeline.from_pretrained(REDUX_DIR).to(dtype=dtype).to("cuda")

# ---------- APP LOGIC ----------
def transform_image(image_pil):
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
    caption = caption.lower().strip()
    if not caption.endswith("."):
        caption = caption + "."
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]              # (nq, 4)

    # filter output
    filt_mask = logits.max(dim=1)[0] > box_threshold
    logits_filt = logits[filt_mask]
    boxes_filt = boxes[filt_mask]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    pred_phrases, scores = [], []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})" if with_logits else pred_phrase)
        scores.append(logit.max().item())
    return boxes_filt, torch.Tensor(scores), pred_phrases


def get_mask(image, label):
    global groundingdino_model, sam_predictor
    image_pil = image.convert("RGB")
    transformed_image = transform_image(image_pil)

    boxes_filt, scores, pred_phrases = get_grounding_output(
        groundingdino_model, transformed_image, label
    )

    W, H = image_pil.size
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]
    boxes_filt = boxes_filt.cpu()

    nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.8).numpy().tolist()
    boxes_filt = boxes_filt[nms_idx]

    image_np = np.array(image_pil)
    sam_predictor.set_image(image_np)
    transformed_boxes = sam_predictor.transform.apply_boxes_torch(
        boxes_filt, image_np.shape[:2]
    ).to("cuda")

    masks, _, _ = sam_predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
    )
    result_mask = masks[0][0].cpu().numpy()
    return Image.fromarray(result_mask)


def create_highlighted_mask(image_np, mask_np, alpha=0.5, gray_value=128):
    if mask_np.max() <= 1.0:
        mask_np = (mask_np * 255).astype(np.uint8)
    mask_bool = mask_np > 128
    image_float = image_np.astype(np.float32)
    gray_overlay = np.full_like(image_float, gray_value, dtype=np.float32)
    result = image_float.copy()
    result[mask_bool] = (1 - alpha) * image_float[mask_bool] + alpha * gray_overlay[mask_bool]
    return result.astype(np.uint8)


# ---------- EXAMPLES ----------
ref_dir = './examples/ref_image'
ref_mask_dir = './examples/ref_mask'
image_dir = './examples/source_image'
image_mask_dir = './examples/source_mask'

ref_list = sorted([os.path.join(ref_dir, f) for f in os.listdir(ref_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
ref_mask_list = sorted([os.path.join(ref_mask_dir, f) for f in os.listdir(ref_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_list = sorted([os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_mask_list = sorted([os.path.join(image_mask_dir, f) for f in os.listdir(image_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])


@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
    if base_mask_option == "Draw Mask":
        tar_image = base_image["background"]
        tar_mask = base_image["layers"][0]
    else:
        tar_image = base_image["background"]
        tar_mask = base_mask["background"]

    if ref_mask_option == "Draw Mask":
        ref_image = reference_image["background"]
        ref_mask = reference_image["layers"][0]
    elif ref_mask_option == "Upload with Mask":
        ref_image = reference_image["background"]
        ref_mask = ref_mask["background"]
    else:
        ref_image = reference_image["background"]
        ref_mask = get_mask(ref_image, text_prompt)

    tar_image = tar_image.convert("RGB")
    tar_mask = tar_mask.convert("L")
    ref_image = ref_image.convert("RGB")
    ref_mask = ref_mask.convert("L")

    return_ref_mask = ref_mask.copy()

    tar_image = np.asarray(tar_image)
    tar_mask = np.asarray(tar_mask)
    tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)

    ref_image = np.asarray(ref_image)
    ref_mask = np.asarray(ref_mask)
    ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)

    if tar_mask.sum() == 0:
        raise gr.Error('No mask for the background image.Please check mask button!')
    if ref_mask.sum() == 0:
        raise gr.Error('No mask for the reference image.Please check mask button!')

    ref_box_yyxx = get_bbox_from_mask(ref_mask)
    ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1)
    masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3)
    y1, y2, x1, x2 = ref_box_yyxx
    masked_ref_image = masked_ref_image[y1:y2, x1:x2, :]
    ref_mask = ref_mask[y1:y2, x1:x2]
    ratio = 1.3
    masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)

    masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False)

    kernel = np.ones((7, 7), np.uint8)
    iterations = 2
    tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)

    # zoom in
    tar_box_yyxx = get_bbox_from_mask(tar_mask)
    tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)

    tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2)
    tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop)  # crop box
    y1, y2, x1, x2 = tar_box_yyxx_crop

    old_tar_image = tar_image.copy()
    tar_image = tar_image[y1:y2, x1:x2, :]
    tar_mask = tar_mask[y1:y2, x1:x2]

    H1, W1 = tar_image.shape[0], tar_image.shape[1]

    tar_mask = pad_to_square(tar_mask, pad_value=0)
    tar_mask = cv2.resize(tar_mask, size)

    masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
    pipe_prior_output = redux(Image.fromarray(masked_ref_image))

    tar_image = pad_to_square(tar_image, pad_value=255)
    H2, W2 = tar_image.shape[0], tar_image.shape[1]
    tar_image = cv2.resize(tar_image, size)
    diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)

    tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1)
    mask_black = np.ones_like(tar_image) * 0
    mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)

    show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych)
    show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar)

    diptych_ref_tar = Image.fromarray(diptych_ref_tar)
    mask_diptych[mask_diptych == 1] = 255
    mask_diptych = Image.fromarray(mask_diptych)

    generator = torch.Generator("cuda").manual_seed(seed)
    edited_image = pipe(
        image=diptych_ref_tar,
        mask_image=mask_diptych,
        height=mask_diptych.size[1],
        width=mask_diptych.size[0],
        max_sequence_length=512,
        generator=generator,
        **pipe_prior_output,
    ).images[0]

    width, height = edited_image.size
    left = width // 2
    edited_image = edited_image.crop((left, 0, width, height))

    edited_image = np.array(edited_image)
    edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
    edited_image = Image.fromarray(edited_image)

    if ref_mask_option != "Label to Mask":
        return [show_diptych_ref_tar, edited_image]
    else:
        return [return_ref_mask, show_diptych_ref_tar, edited_image]


def update_ui(option):
    if option == "Draw Mask":
        return gr.update(visible=False), gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=False)


with gr.Blocks() as demo:
    gr.Markdown("# Insert-Anything")
    gr.Markdown("### Make sure to select the correct mask button!!")
    gr.Markdown("### Click the output image to toggle between Diptych and final results!!")

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil",
                                            brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
                                            layers=False, interactive=True)
                base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil",
                                           layers=False, brush=False, eraser=False)
            with gr.Row():
                base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option",
                                            value="Upload with Mask")

            with gr.Row():
                ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil",
                                           brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
                                           layers=False, interactive=True)
                ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil",
                                          layers=False, brush=False, eraser=False)

            with gr.Row():
                ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"],
                                           label="Reference Mask Input Option", value="Upload with Mask")
            with gr.Row():
                text_prompt = gr.Textbox(label="Label",
                                         placeholder="Enter the category of the reference object, e.g., car, dress, toy, etc.")

        with gr.Column(scale=1):
            baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=695, columns=1)
            with gr.Accordion("Advanced Option", open=True):
                seed = gr.Slider(label="Seed", minimum=-1, maximum=999_999_999, step=1, value=666)
                gr.Markdown("### Guidelines")
                gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
                gr.Markdown(" Draw Mask means manually drawing a mask on the original image.")
                gr.Markdown(" Upload with Mask means uploading a mask file.")
                gr.Markdown(" Label to Mask means simply inputting a label to automatically extract the mask and obtain the result.")

    run_local_button = gr.Button(value="Run")

    # examples
    num_examples = len(image_list)
    for i in range(num_examples):
        with gr.Row():
            if i == 0:
                gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
                gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
                gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
                gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
            else:
                gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
                gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
                gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
                gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
        if i < num_examples - 1:
            gr.HTML("<hr>")

    run_local_button.click(
        fn=run_local,
        inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt],
        outputs=[baseline_gallery]
    )
demo.launch()