isayahc commited on
Commit
445dc1d
·
1 Parent(s): 2b65fe3

organized import statements

Browse files
Files changed (1) hide show
  1. app.py +9 -13
app.py CHANGED
@@ -3,31 +3,27 @@ import boto3
3
  from botocore import UNSIGNED
4
  from botocore.client import Config
5
 
6
- from langchain.document_loaders import WebBaseLoader
7
 
8
  from huggingface_hub import AsyncInferenceClient
9
 
10
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
11
 
12
-
13
  from langchain.text_splitter import RecursiveCharacterTextSplitter
14
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10)
15
-
16
  from langchain.llms import HuggingFaceHub
17
- model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
18
-
19
  from langchain.embeddings import HuggingFaceHubEmbeddings
20
- embeddings = HuggingFaceHubEmbeddings()
21
-
22
  from langchain.vectorstores import Chroma
23
-
24
  from langchain.chains import RetrievalQA
25
-
26
  from langchain.prompts import ChatPromptTemplate
 
 
 
 
 
 
 
 
 
27
 
28
- #web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"]
29
- #loader = WebBaseLoader(web_links)
30
- #documents = loader.load()
31
 
32
  s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
33
  s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')
 
3
  from botocore import UNSIGNED
4
  from botocore.client import Config
5
 
 
6
 
7
  from huggingface_hub import AsyncInferenceClient
8
 
9
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
10
 
 
11
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
 
12
  from langchain.llms import HuggingFaceHub
 
 
13
  from langchain.embeddings import HuggingFaceHubEmbeddings
 
 
14
  from langchain.vectorstores import Chroma
 
15
  from langchain.chains import RetrievalQA
 
16
  from langchain.prompts import ChatPromptTemplate
17
+ from langchain.document_loaders import WebBaseLoader
18
+
19
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10)
20
+
21
+
22
+ model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
23
+
24
+
25
+ embeddings = HuggingFaceHubEmbeddings()
26
 
 
 
 
27
 
28
  s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
29
  s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')