Deepsider2api / app.py
isididiidid's picture
Update app.py
607afd3 verified
raw
history blame
21.2 kB
import json
import time
import asyncio
import uvicorn
from fastapi import FastAPI, Request, HTTPException, Header, Depends
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
import requests
from datetime import datetime
import logging
import os
from dotenv import load_dotenv
# 加载环境变量
load_dotenv()
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("openai-proxy")
# 创建FastAPI应用
app = FastAPI(
title="OpenAI API Proxy",
description="将OpenAI API请求代理到DeepSider API",
version="1.0.0"
)
# 添加CORS中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 配置
DEEPSIDER_API_BASE = "https://api.chargpt.ai/api/v2"
TOKEN_INDEX = 0
# 模型映射表
MODEL_MAPPING = {
"gpt-3.5-turbo": "anthropic/claude-3.5-sonnet",
"gpt-4": "anthropic/claude-3.7-sonnet",
"gpt-4o": "openai/gpt-4o",
"gpt-4-turbo": "openai/gpt-4o",
"gpt-4o-mini": "openai/gpt-4o-mini",
"claude-3-sonnet-20240229": "anthropic/claude-3.5-sonnet",
"claude-3-opus-20240229": "anthropic/claude-3.7-sonnet",
"claude-3.5-sonnet": "anthropic/claude-3.5-sonnet",
"claude-3.7-sonnet": "anthropic/claude-3.7-sonnet",
}
# 请求头
def get_headers(api_key):
global TOKEN_INDEX
# 检查是否包含多个token(用逗号分隔)
tokens = api_key.split(',')
if len(tokens) > 0:
# 轮询选择token
current_token = tokens[TOKEN_INDEX % len(tokens)]
TOKEN_INDEX = (TOKEN_INDEX + 1) % len(tokens)
else:
current_token = api_key
return {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
"accept-language": "en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7",
"content-type": "application/json",
"origin": "chrome-extension://client",
"i-lang": "zh-CN",
"i-version": "1.1.64",
"sec-ch-ua": '"Chromium";v="134", "Not:A-Brand";v="24"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "Windows",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
"authorization": f"Bearer {current_token.strip()}"
}
# OpenAI API请求模型
class ChatMessage(BaseModel):
role: str
content: str
name: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
stop: Optional[Union[List[str], str]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
user: Optional[str] = None
# 账户余额查询函数
async def check_account_balance(api_key, token_index=None):
"""检查账户余额信息"""
tokens = api_key.split(',')
# 如果提供了token_index并且有效,则使用指定的token
if token_index is not None and len(tokens) > token_index:
current_token = tokens[token_index].strip()
else:
# 否则使用第一个token
current_token = tokens[0].strip() if tokens else api_key
headers = {
"accept": "*/*",
"content-type": "application/json",
"authorization": f"Bearer {current_token}"
}
try:
# 获取账户余额信息
response = requests.get(
f"{DEEPSIDER_API_BASE.replace('/v2', '')}/quota/retrieve",
headers=headers
)
if response.status_code == 200:
data = response.json()
if data.get('code') == 0:
quota_list = data.get('data', {}).get('list', [])
# 解析余额信息
quota_info = {}
for item in quota_list:
item_type = item.get('type', '')
available = item.get('available', 0)
quota_info[item_type] = {
"total": item.get('total', 0),
"available": available,
"title": item.get('title', '')
}
return True, quota_info
return False, {}
except Exception as e:
logger.warning(f"检查账户余额出错:{str(e)}")
return False, {}
# 工具函数
def verify_api_key(api_key: str = Header(..., alias="Authorization")):
"""验证API密钥"""
if not api_key.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid API key format")
return api_key.replace("Bearer ", "")
def map_openai_to_deepsider_model(model: str) -> str:
"""将OpenAI模型名称映射到DeepSider模型名称"""
return MODEL_MAPPING.get(model, "anthropic/claude-3.7-sonnet")
def format_messages_for_deepsider(messages: List[ChatMessage]) -> str:
"""格式化消息列表为DeepSider API所需的提示格式"""
prompt = ""
for msg in messages:
role = msg.role
# 将OpenAI的角色映射到DeepSider能理解的格式
if role == "system":
# 系统消息放在开头 作为指导
prompt = f"{msg.content}\n\n" + prompt
elif role == "user":
prompt += f"Human: {msg.content}\n\n"
elif role == "assistant":
prompt += f"Assistant: {msg.content}\n\n"
else:
# 其他角色按用户处理
prompt += f"Human ({role}): {msg.content}\n\n"
# 如果最后一个消息不是用户的 添加一个Human前缀引导模型回答
if messages and messages[-1].role != "user":
prompt += "Human: "
return prompt.strip()
async def generate_openai_response(full_response: str, request_id: str, model: str) -> Dict:
"""生成符合OpenAI API响应格式的完整响应"""
timestamp = int(time.time())
return {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": full_response
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 0, # 无法准确计算
"completion_tokens": 0, # 无法准确计算
"total_tokens": 0 # 无法准确计算
}
}
async def stream_openai_response(response, request_id: str, model: str, api_key, token_index):
"""流式返回OpenAI API格式的响应"""
timestamp = int(time.time())
full_response = ""
try:
# 将DeepSider响应流转换为OpenAI流格式
for line in response.iter_lines():
if not line:
continue
if line.startswith(b'data: '):
try:
data_text = line[6:].decode('utf-8')
# 检查是否为有效JSON
if data_text.strip():
data = json.loads(data_text)
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
# 获取正文内容
content = data.get('data', {}).get('content', '')
if content:
full_response += content
# 生成OpenAI格式的流式响应
chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": content
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
elif data.get('code') == 203:
# 生成完成信号
chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
# 添加对错误代码的处理
elif data.get('code') != 0:
error_msg = data.get('message', 'Unknown error')
logger.error(f"API返回错误: {error_msg}")
# 返回错误信息给客户端
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": f"\n\n[API返回错误: {error_msg}]"
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
except json.JSONDecodeError as e:
logger.warning(f"无法解析响应: {line} - 错误: {str(e)}")
except Exception as e:
logger.warning(f"处理数据时出错: {str(e)} - 数据: {line}")
# 检查是否没有收到任何内容
if not full_response:
logger.warning("未收到任何响应内容")
# 发送一个提示消息
empty_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": "[未收到API响应。请检查您的token是否有效或是否有足够的配额。]"
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(empty_chunk)}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(f"流式响应处理出错: {str(e)}")
# 尝试使用下一个Token
tokens = api_key.split(',')
if len(tokens) > 1:
logger.info(f"尝试使用下一个Token重试请求")
# 目前我们不在这里实现自动重试,只记录错误
# 返回错误信息
error_chunk = {
"id": f"chatcmpl-{request_id}",
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": f"\n\n[处理响应时出错: {str(e)}]"
},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
# 路由定义
@app.get("/")
async def root():
"""返回简单的HTML页面,展示使用说明"""
return {
"message": "OpenAI API Proxy服务已启动 连接至DeepSider API",
"usage": {
"模型列表": "GET /v1/models",
"聊天完成": "POST /v1/chat/completions",
"账户余额": "GET /admin/balance (需要X-Admin-Key头)"
},
"说明": "请在Authorization头中使用Bearer token格式,支持使用英文逗号分隔多个token实现轮询"
}
@app.get("/v1/models")
async def list_models(api_key: str = Depends(verify_api_key)):
"""列出可用的模型"""
models = []
for openai_model, _ in MODEL_MAPPING.items():
models.append({
"id": openai_model,
"object": "model",
"created": int(time.time()),
"owned_by": "openai-proxy"
})
return {
"object": "list",
"data": models
}
@app.post("/v1/chat/completions")
async def create_chat_completion(
request: Request,
api_key: str = Depends(verify_api_key)
):
"""创建聊天完成API - 支持普通请求和流式请求"""
# 解析请求体
body = await request.json()
chat_request = ChatCompletionRequest(**body)
# 生成唯一请求ID
request_id = datetime.now().strftime("%Y%m%d%H%M%S") + str(time.time_ns())[-6:]
# 映射模型
deepsider_model = map_openai_to_deepsider_model(chat_request.model)
# 准备DeepSider API所需的提示
prompt = format_messages_for_deepsider(chat_request.messages)
# 准备请求体
payload = {
"model": deepsider_model,
"prompt": prompt,
"webAccess": "close", # 默认关闭网络访问
"timezone": "Asia/Shanghai"
}
# 获取请求头(包含选择的token)
headers = get_headers(api_key)
# 获取当前使用的token
tokens = api_key.split(',')
current_token_index = (TOKEN_INDEX - 1) % len(tokens) if len(tokens) > 0 else 0
try:
# 记录请求信息
logger.info(f"发送请求到DeepSider API - 模型: {deepsider_model}, Token索引: {current_token_index}")
# 发送请求到DeepSider API
response = requests.post(
f"{DEEPSIDER_API_BASE}/chat/conversation",
headers=headers,
json=payload,
stream=True
)
# 检查响应状态
if response.status_code != 200:
error_msg = f"DeepSider API请求失败: {response.status_code}"
try:
error_data = response.json()
error_msg += f" - {error_data.get('message', '')}"
except:
error_msg += f" - {response.text}"
logger.error(error_msg)
raise HTTPException(status_code=response.status_code, detail="API请求失败")
# 处理流式或非流式响应
if chat_request.stream:
# 返回流式响应
return StreamingResponse(
stream_openai_response(response, request_id, chat_request.model, api_key, current_token_index),
media_type="text/event-stream"
)
else:
# 收集完整响应
full_response = ""
has_error = False
error_message = ""
for line in response.iter_lines():
if not line:
continue
if line.startswith(b'data: '):
try:
data_text = line[6:].decode('utf-8')
if data_text.strip():
data = json.loads(data_text)
if data.get('code') == 202 and data.get('data', {}).get('type') == "chat":
content = data.get('data', {}).get('content', '')
if content:
full_response += content
elif data.get('code') != 0 and data.get('code') != 203:
has_error = True
error_message = data.get('message', 'Unknown error')
logger.error(f"API返回错误: {error_message}")
except json.JSONDecodeError as e:
logger.warning(f"无法解析响应: {line} - 错误: {str(e)}")
except Exception as e:
logger.warning(f"处理数据时出错: {str(e)} - 数据: {line}")
# 检查是否没有收到任何内容
if not full_response and not has_error:
logger.warning("未收到任何响应内容")
full_response = "[未收到API响应。请检查您的token是否有效或是否有足够的配额。]"
elif has_error:
full_response = f"[API返回错误: {error_message}]"
# 返回OpenAI格式的完整响应
return await generate_openai_response(full_response, request_id, chat_request.model)
except HTTPException:
raise
except Exception as e:
logger.exception("处理请求时出错")
raise HTTPException(status_code=500, detail=f"内部服务器错误: {str(e)}")
@app.get("/admin/balance")
async def get_account_balance(request: Request, admin_key: str = Header(None, alias="X-Admin-Key")):
"""查看账户余额"""
# 简单的管理密钥检查
expected_admin_key = os.getenv("ADMIN_KEY", "admin")
if not admin_key or admin_key != expected_admin_key:
raise HTTPException(status_code=403, detail="Unauthorized")
# 从请求头中获取API密钥
auth_header = request.headers.get("Authorization", "")
if not auth_header or not auth_header.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Missing or invalid Authorization header")
api_key = auth_header.replace("Bearer ", "")
tokens = api_key.split(',')
result = {}
# 获取所有token的余额信息
for i, token in enumerate(tokens):
token_display = f"token_{i+1}"
success, quota_info = await check_account_balance(api_key, i)
if success:
result[token_display] = {
"status": "success",
"quota": quota_info
}
else:
result[token_display] = {
"status": "error",
"message": "无法获取账户余额信息"
}
return result
# 错误处理器
@app.exception_handler(404)
async def not_found_handler(request, exc):
return {
"error": {
"message": f"未找到资源: {request.url.path}",
"type": "not_found_error",
"code": "not_found"
}
}
@app.exception_handler(500)
async def server_error_handler(request, exc):
return {
"error": {
"message": f"服务器内部错误: {str(exc)}",
"type": "server_error",
"code": "internal_server_error"
}
}
# 启动事件
@app.on_event("startup")
async def startup_event():
"""服务启动时初始化"""
logger.info(f"OpenAI API代理服务已启动,可以接受请求")
logger.info(f"支持多token轮询,请在Authorization头中使用英文逗号分隔多个token")
logger.info(f"服务地址: http://127.0.0.1:7860")
logger.info(f"OpenAI API格式请求示例: POST http://127.0.0.1:7860/v1/chat/completions")
logger.info(f"可用模型查询: GET http://127.0.0.1:7860/v1/models")
# 主程序
if __name__ == "__main__":
# 启动服务器
port = int(os.getenv("PORT", "7860"))
logger.info(f"启动OpenAI API代理服务 端口: {port}")
uvicorn.run(app, host="0.0.0.0", port=port)