Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import argparse
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torch.utils import data
|
| 9 |
+
import torchvision.transforms as transform
|
| 10 |
+
from torch.nn.parallel.scatter_gather import gather
|
| 11 |
+
from additional_utils.models import LSeg_MultiEvalModule
|
| 12 |
+
from modules.lseg_module import LSegModule
|
| 13 |
+
import cv2
|
| 14 |
+
import math
|
| 15 |
+
import types
|
| 16 |
+
import functools
|
| 17 |
+
import torchvision.transforms as torch_transforms
|
| 18 |
+
import copy
|
| 19 |
+
import itertools
|
| 20 |
+
from PIL import Image
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
import clip
|
| 23 |
+
from encoding.models.sseg import BaseNet
|
| 24 |
+
import matplotlib as mpl
|
| 25 |
+
import matplotlib.colors as mplc
|
| 26 |
+
import matplotlib.figure as mplfigure
|
| 27 |
+
import matplotlib.patches as mpatches
|
| 28 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
| 29 |
+
from data import get_dataset
|
| 30 |
+
import torchvision.transforms as transforms
|
| 31 |
+
|
| 32 |
+
import gradio as gr
|
| 33 |
+
|
| 34 |
+
model_name = "convnext_xlarge_in22k"
|
| 35 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 36 |
+
def get_new_pallete(num_cls):
|
| 37 |
+
n = num_cls
|
| 38 |
+
pallete = [0]*(n*3)
|
| 39 |
+
for j in range(0,n):
|
| 40 |
+
lab = j
|
| 41 |
+
pallete[j*3+0] = 0
|
| 42 |
+
pallete[j*3+1] = 0
|
| 43 |
+
pallete[j*3+2] = 0
|
| 44 |
+
i = 0
|
| 45 |
+
while (lab > 0):
|
| 46 |
+
pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i))
|
| 47 |
+
pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i))
|
| 48 |
+
pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i))
|
| 49 |
+
i = i + 1
|
| 50 |
+
lab >>= 3
|
| 51 |
+
return pallete
|
| 52 |
+
|
| 53 |
+
def get_new_mask_pallete(npimg, new_palette, out_label_flag=False, labels=None):
|
| 54 |
+
"""Get image color pallete for visualizing masks"""
|
| 55 |
+
# put colormap
|
| 56 |
+
out_img = Image.fromarray(npimg.squeeze().astype('uint8'))
|
| 57 |
+
out_img.putpalette(new_palette)
|
| 58 |
+
|
| 59 |
+
if out_label_flag:
|
| 60 |
+
assert labels is not None
|
| 61 |
+
u_index = np.unique(npimg)
|
| 62 |
+
patches = []
|
| 63 |
+
for i, index in enumerate(u_index):
|
| 64 |
+
label = labels[index]
|
| 65 |
+
cur_color = [new_palette[index * 3] / 255.0, new_palette[index * 3 + 1] / 255.0, new_palette[index * 3 + 2] / 255.0]
|
| 66 |
+
red_patch = mpatches.Patch(color=cur_color, label=label)
|
| 67 |
+
patches.append(red_patch)
|
| 68 |
+
return out_img, patches
|
| 69 |
+
|
| 70 |
+
@st.cache(allow_output_mutation=True)
|
| 71 |
+
def load_model():
|
| 72 |
+
class Options:
|
| 73 |
+
def __init__(self):
|
| 74 |
+
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
|
| 75 |
+
# model and dataset
|
| 76 |
+
parser.add_argument(
|
| 77 |
+
"--model", type=str, default="encnet", help="model name (default: encnet)"
|
| 78 |
+
)
|
| 79 |
+
parser.add_argument(
|
| 80 |
+
"--backbone",
|
| 81 |
+
type=str,
|
| 82 |
+
default="clip_vitl16_384",
|
| 83 |
+
help="backbone name (default: resnet50)",
|
| 84 |
+
)
|
| 85 |
+
parser.add_argument(
|
| 86 |
+
"--dataset",
|
| 87 |
+
type=str,
|
| 88 |
+
default="ade20k",
|
| 89 |
+
help="dataset name (default: pascal12)",
|
| 90 |
+
)
|
| 91 |
+
parser.add_argument(
|
| 92 |
+
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
|
| 93 |
+
)
|
| 94 |
+
parser.add_argument(
|
| 95 |
+
"--base-size", type=int, default=520, help="base image size"
|
| 96 |
+
)
|
| 97 |
+
parser.add_argument(
|
| 98 |
+
"--crop-size", type=int, default=480, help="crop image size"
|
| 99 |
+
)
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
"--train-split",
|
| 102 |
+
type=str,
|
| 103 |
+
default="train",
|
| 104 |
+
help="dataset train split (default: train)",
|
| 105 |
+
)
|
| 106 |
+
parser.add_argument(
|
| 107 |
+
"--aux", action="store_true", default=False, help="Auxilary Loss"
|
| 108 |
+
)
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--se-loss",
|
| 111 |
+
action="store_true",
|
| 112 |
+
default=False,
|
| 113 |
+
help="Semantic Encoding Loss SE-loss",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
|
| 117 |
+
)
|
| 118 |
+
parser.add_argument(
|
| 119 |
+
"--batch-size",
|
| 120 |
+
type=int,
|
| 121 |
+
default=16,
|
| 122 |
+
metavar="N",
|
| 123 |
+
help="input batch size for \
|
| 124 |
+
training (default: auto)",
|
| 125 |
+
)
|
| 126 |
+
parser.add_argument(
|
| 127 |
+
"--test-batch-size",
|
| 128 |
+
type=int,
|
| 129 |
+
default=16,
|
| 130 |
+
metavar="N",
|
| 131 |
+
help="input batch size for \
|
| 132 |
+
testing (default: same as batch size)",
|
| 133 |
+
)
|
| 134 |
+
# cuda, seed and logging
|
| 135 |
+
parser.add_argument(
|
| 136 |
+
"--no-cuda",
|
| 137 |
+
action="store_true",
|
| 138 |
+
default=False,
|
| 139 |
+
help="disables CUDA training",
|
| 140 |
+
)
|
| 141 |
+
parser.add_argument(
|
| 142 |
+
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
|
| 143 |
+
)
|
| 144 |
+
# checking point
|
| 145 |
+
parser.add_argument(
|
| 146 |
+
"--weights", type=str, default='', help="checkpoint to test"
|
| 147 |
+
)
|
| 148 |
+
# evaluation option
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--eval", action="store_true", default=False, help="evaluating mIoU"
|
| 151 |
+
)
|
| 152 |
+
parser.add_argument(
|
| 153 |
+
"--export",
|
| 154 |
+
type=str,
|
| 155 |
+
default=None,
|
| 156 |
+
help="put the path to resuming file if needed",
|
| 157 |
+
)
|
| 158 |
+
parser.add_argument(
|
| 159 |
+
"--acc-bn",
|
| 160 |
+
action="store_true",
|
| 161 |
+
default=False,
|
| 162 |
+
help="Re-accumulate BN statistics",
|
| 163 |
+
)
|
| 164 |
+
parser.add_argument(
|
| 165 |
+
"--test-val",
|
| 166 |
+
action="store_true",
|
| 167 |
+
default=False,
|
| 168 |
+
help="generate masks on val set",
|
| 169 |
+
)
|
| 170 |
+
parser.add_argument(
|
| 171 |
+
"--no-val",
|
| 172 |
+
action="store_true",
|
| 173 |
+
default=False,
|
| 174 |
+
help="skip validation during training",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--module",
|
| 179 |
+
default='lseg',
|
| 180 |
+
help="select model definition",
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# test option
|
| 184 |
+
parser.add_argument(
|
| 185 |
+
"--data-path", type=str, default='../datasets/', help="path to test image folder"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
parser.add_argument(
|
| 189 |
+
"--no-scaleinv",
|
| 190 |
+
dest="scale_inv",
|
| 191 |
+
default=True,
|
| 192 |
+
action="store_false",
|
| 193 |
+
help="turn off scaleinv layers",
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
parser.add_argument(
|
| 197 |
+
"--widehead", default=False, action="store_true", help="wider output head"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
parser.add_argument(
|
| 201 |
+
"--widehead_hr",
|
| 202 |
+
default=False,
|
| 203 |
+
action="store_true",
|
| 204 |
+
help="wider output head",
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument(
|
| 207 |
+
"--ignore_index",
|
| 208 |
+
type=int,
|
| 209 |
+
default=-1,
|
| 210 |
+
help="numeric value of ignore label in gt",
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--label_src",
|
| 215 |
+
type=str,
|
| 216 |
+
default="default",
|
| 217 |
+
help="how to get the labels",
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
parser.add_argument(
|
| 221 |
+
"--arch_option",
|
| 222 |
+
type=int,
|
| 223 |
+
default=0,
|
| 224 |
+
help="which kind of architecture to be used",
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
parser.add_argument(
|
| 228 |
+
"--block_depth",
|
| 229 |
+
type=int,
|
| 230 |
+
default=0,
|
| 231 |
+
help="how many blocks should be used",
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--activation",
|
| 236 |
+
choices=['lrelu', 'tanh'],
|
| 237 |
+
default="lrelu",
|
| 238 |
+
help="use which activation to activate the block",
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
self.parser = parser
|
| 242 |
+
|
| 243 |
+
def parse(self):
|
| 244 |
+
args = self.parser.parse_args(args=[])
|
| 245 |
+
args.cuda = not args.no_cuda and torch.cuda.is_available()
|
| 246 |
+
print(args)
|
| 247 |
+
return args
|
| 248 |
+
|
| 249 |
+
args = Options().parse()
|
| 250 |
+
|
| 251 |
+
torch.manual_seed(args.seed)
|
| 252 |
+
args.test_batch_size = 1
|
| 253 |
+
alpha=0.5
|
| 254 |
+
|
| 255 |
+
args.scale_inv = False
|
| 256 |
+
args.widehead = True
|
| 257 |
+
args.dataset = 'ade20k'
|
| 258 |
+
args.backbone = 'clip_vitl16_384'
|
| 259 |
+
args.weights = 'checkpoints/demo_e200.ckpt'
|
| 260 |
+
args.ignore_index = 255
|
| 261 |
+
|
| 262 |
+
module = LSegModule.load_from_checkpoint(
|
| 263 |
+
checkpoint_path=args.weights,
|
| 264 |
+
data_path=args.data_path,
|
| 265 |
+
dataset=args.dataset,
|
| 266 |
+
backbone=args.backbone,
|
| 267 |
+
aux=args.aux,
|
| 268 |
+
num_features=256,
|
| 269 |
+
aux_weight=0,
|
| 270 |
+
se_loss=False,
|
| 271 |
+
se_weight=0,
|
| 272 |
+
base_lr=0,
|
| 273 |
+
batch_size=1,
|
| 274 |
+
max_epochs=0,
|
| 275 |
+
ignore_index=args.ignore_index,
|
| 276 |
+
dropout=0.0,
|
| 277 |
+
scale_inv=args.scale_inv,
|
| 278 |
+
augment=False,
|
| 279 |
+
no_batchnorm=False,
|
| 280 |
+
widehead=args.widehead,
|
| 281 |
+
widehead_hr=args.widehead_hr,
|
| 282 |
+
map_locatin="cpu",
|
| 283 |
+
arch_option=0,
|
| 284 |
+
block_depth=0,
|
| 285 |
+
activation='lrelu',
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
input_transform = module.val_transform
|
| 289 |
+
|
| 290 |
+
# dataloader
|
| 291 |
+
loader_kwargs = (
|
| 292 |
+
{"num_workers": args.workers, "pin_memory": True} if args.cuda else {}
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# model
|
| 296 |
+
if isinstance(module.net, BaseNet):
|
| 297 |
+
model = module.net
|
| 298 |
+
else:
|
| 299 |
+
model = module
|
| 300 |
+
|
| 301 |
+
model = model.eval()
|
| 302 |
+
model = model.cpu()
|
| 303 |
+
scales = (
|
| 304 |
+
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
|
| 305 |
+
if args.dataset == "citys"
|
| 306 |
+
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
model.mean = [0.5, 0.5, 0.5]
|
| 310 |
+
model.std = [0.5, 0.5, 0.5]
|
| 311 |
+
evaluator = LSeg_MultiEvalModule(
|
| 312 |
+
model, scales=scales, flip=True
|
| 313 |
+
).cuda()
|
| 314 |
+
evaluator.eval()
|
| 315 |
+
|
| 316 |
+
transform = transforms.Compose(
|
| 317 |
+
[
|
| 318 |
+
transforms.ToTensor(),
|
| 319 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
| 320 |
+
transforms.Resize([360,480]),
|
| 321 |
+
]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
return evaluator, transform
|
| 325 |
+
|
| 326 |
+
"""
|
| 327 |
+
# LSeg Demo
|
| 328 |
+
"""
|
| 329 |
+
lseg_model, lseg_transform = load_model()
|
| 330 |
+
|
| 331 |
+
# to be revised
|
| 332 |
+
uploaded_file = gr.inputs.Image(type='pil')
|
| 333 |
+
input_labels = st.text_input("Input labels", value="dog, grass, other")
|
| 334 |
+
gr.outputs.Label(type="confidences",num_top_classes=5)
|
| 335 |
+
st.write("The labels are", input_labels)
|
| 336 |
+
|
| 337 |
+
image = Image.open(uploaded_file)
|
| 338 |
+
pimage = lseg_transform(np.array(image)).unsqueeze(0)
|
| 339 |
+
|
| 340 |
+
labels = []
|
| 341 |
+
for label in input_labels.split(","):
|
| 342 |
+
labels.append(label.strip())
|
| 343 |
+
|
| 344 |
+
with torch.no_grad():
|
| 345 |
+
outputs = lseg_model.parallel_forward(pimage, labels)
|
| 346 |
+
|
| 347 |
+
predicts = [
|
| 348 |
+
torch.max(output, 1)[1].cpu().numpy()
|
| 349 |
+
for output in outputs
|
| 350 |
+
]
|
| 351 |
+
|
| 352 |
+
image = pimage[0].permute(1,2,0)
|
| 353 |
+
image = image * 0.5 + 0.5
|
| 354 |
+
image = Image.fromarray(np.uint8(255*image)).convert("RGBA")
|
| 355 |
+
|
| 356 |
+
pred = predicts[0]
|
| 357 |
+
new_palette = get_new_pallete(len(labels))
|
| 358 |
+
mask, patches = get_new_mask_pallete(pred, new_palette, out_label_flag=True, labels=labels)
|
| 359 |
+
seg = mask.convert("RGBA")
|
| 360 |
+
|
| 361 |
+
fig = plt.figure()
|
| 362 |
+
plt.subplot(121)
|
| 363 |
+
plt.imshow(image)
|
| 364 |
+
plt.axis('off')
|
| 365 |
+
|
| 366 |
+
plt.subplot(122)
|
| 367 |
+
plt.imshow(seg)
|
| 368 |
+
plt.legend(handles=patches, loc='upper right', bbox_to_anchor=(1.3, 1), prop={'size': 5})
|
| 369 |
+
plt.axis('off')
|
| 370 |
+
|
| 371 |
+
plt.tight_layout()
|
| 372 |
+
|
| 373 |
+
#st.image([image,seg], width=700, caption=["Input image", "Segmentation"])
|
| 374 |
+
st.pyplot(fig)
|
| 375 |
+
|
| 376 |
+
title = "LSeg"
|
| 377 |
+
|
| 378 |
+
description = "Gradio demo for LSeg for semantic segmentation. To use it, simply upload your image, or click one of the examples to load them, then add any label set"
|
| 379 |
+
|
| 380 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.03546' target='_blank'>Language-driven Semantic Segmentation</a> | <a href='hhttps://github.com/isl-org/lang-seg' target='_blank'>Github Repo</a></p>"
|
| 381 |
+
|
| 382 |
+
examples = ['test.jpeg']
|
| 383 |
+
|
| 384 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False, examples=examples).launch(enable_queue=True)
|