|
import os |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
import imageio |
|
from MiDaS.MiDaS_utils import write_depth |
|
|
|
BOOST_BASE = 'BoostingMonocularDepth' |
|
|
|
BOOST_INPUTS = 'inputs' |
|
BOOST_OUTPUTS = 'outputs' |
|
|
|
def run_boostmonodepth(img_names, src_folder, depth_folder): |
|
|
|
if not isinstance(img_names, list): |
|
img_names = [img_names] |
|
|
|
|
|
clean_folder(os.path.join(BOOST_BASE, BOOST_INPUTS)) |
|
clean_folder(os.path.join(BOOST_BASE, BOOST_OUTPUTS)) |
|
|
|
tgt_names = [] |
|
for img_name in img_names: |
|
base_name = os.path.basename(img_name) |
|
tgt_name = os.path.join(BOOST_BASE, BOOST_INPUTS, base_name) |
|
os.system(f'cp {img_name} {tgt_name}') |
|
|
|
|
|
|
|
tgt_names.append(os.path.basename(tgt_name).replace('.jpg', '.png')) |
|
|
|
os.system(f'cd {BOOST_BASE} && python run.py --Final --data_dir {BOOST_INPUTS}/ --output_dir {BOOST_OUTPUTS} --depthNet 0') |
|
|
|
for i, (img_name, tgt_name) in enumerate(zip(img_names, tgt_names)): |
|
img = imageio.imread(img_name) |
|
H, W = img.shape[:2] |
|
scale = 640. / max(H, W) |
|
|
|
|
|
target_height, target_width = int(round(H * scale)), int(round(W * scale)) |
|
depth = imageio.imread(os.path.join(BOOST_BASE, BOOST_OUTPUTS, tgt_name)) |
|
depth = np.array(depth).astype(np.float32) |
|
depth = resize_depth(depth, target_width, target_height) |
|
np.save(os.path.join(depth_folder, tgt_name.replace('.png', '.npy')), depth / 32768. - 1.) |
|
write_depth(os.path.join(depth_folder, tgt_name.replace('.png', '')), depth) |
|
|
|
def clean_folder(folder, img_exts=['.png', '.jpg', '.npy']): |
|
|
|
for img_ext in img_exts: |
|
paths_to_check = os.path.join(folder, f'*{img_ext}') |
|
if len(glob.glob(paths_to_check)) == 0: |
|
continue |
|
print(paths_to_check) |
|
os.system(f'rm {paths_to_check}') |
|
|
|
def resize_depth(depth, width, height): |
|
"""Resize numpy (or image read by imageio) depth map |
|
|
|
Args: |
|
depth (numpy): depth |
|
width (int): image width |
|
height (int): image height |
|
|
|
Returns: |
|
array: processed depth |
|
""" |
|
depth = cv2.blur(depth, (3, 3)) |
|
return cv2.resize(depth, (width, height), interpolation=cv2.INTER_AREA) |
|
|