|
import os |
|
|
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import onnxruntime as ort |
|
from PIL import Image |
|
|
|
_sess_options = ort.SessionOptions() |
|
_sess_options.intra_op_num_threads = os.cpu_count() |
|
MODEL_SESS = ort.InferenceSession( |
|
"cartoonizer.onnx", _sess_options, providers=["CPUExecutionProvider"] |
|
) |
|
|
|
|
|
def preprocess_image(image: Image) -> np.ndarray: |
|
image = np.array(image) |
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
h, w, c = np.shape(image) |
|
if min(h, w) > 720: |
|
if h > w: |
|
h, w = int(720 * h / w), 720 |
|
else: |
|
h, w = 720, int(720 * w / h) |
|
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) |
|
h, w = (h // 8) * 8, (w // 8) * 8 |
|
image = image[:h, :w, :] |
|
image = image.astype(np.float32) / 127.5 - 1 |
|
return np.expand_dims(image, axis=0) |
|
|
|
|
|
def inference(image: np.ndarray) -> Image: |
|
image = preprocess_image(image) |
|
results = MODEL_SESS.run(None, {"input_photo:0": image}) |
|
output = (np.squeeze(results[0]) + 1.0) * 127.5 |
|
output = np.clip(output, 0, 255).astype(np.uint8) |
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return Image.fromarray(output) |
|
|
|
|
|
title = "Generate cartoonized images" |
|
article = "Demo of CartoonGAN model (https://systemerrorwang.github.io/White-box-Cartoonization/). \nDemo image is from https://unsplash.com/photos/f0SgAs27BYI." |
|
|
|
iface = gr.Interface( |
|
inference, |
|
inputs=gr.inputs.Image(type="pil", label="Input Image"), |
|
outputs="image", |
|
title=title, |
|
article=article, |
|
allow_flagging="never", |
|
examples=[["mountain.jpeg"]], |
|
) |
|
iface.launch() |
|
|