""" | |
@Date: 2021/08/12 | |
@description: | |
""" | |
import torch | |
import torch.nn as nn | |
class LEDLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.loss = nn.L1Loss() | |
def forward(self, gt, dt): | |
camera_height = 1.6 | |
gt_depth = gt['depth'] * camera_height | |
dt_ceil_depth = dt['ceil_depth'] * camera_height * gt['ratio'] | |
dt_floor_depth = dt['depth'] * camera_height | |
ceil_loss = self.loss(gt_depth, dt_ceil_depth) | |
floor_loss = self.loss(gt_depth, dt_floor_depth) | |
loss = floor_loss + ceil_loss | |
return loss | |
if __name__ == '__main__': | |
import numpy as np | |
from dataset.mp3d_dataset import MP3DDataset | |
mp3d_dataset = MP3DDataset(root_dir='../src/dataset/mp3d', mode='train') | |
gt = mp3d_dataset.__getitem__(0) | |
gt['depth'] = torch.from_numpy(gt['depth'][np.newaxis]) # batch size is 1 | |
gt['ratio'] = torch.from_numpy(gt['ratio'][np.newaxis]) # batch size is 1 | |
dummy_dt = { | |
'depth': gt['depth'].clone(), | |
'ceil_depth': gt['depth'] / gt['ratio'] | |
} | |
# dummy_dt['depth'][..., :20] *= 3 # some different | |
led_loss = LEDLoss() | |
loss = led_loss(gt, dummy_dt) | |
print(loss) | |