|
import gradio as gr |
|
import subprocess |
|
|
|
import yaml |
|
from tqdm import tqdm |
|
|
|
import imageio |
|
import numpy as np |
|
from skimage.transform import resize |
|
from skimage import img_as_ubyte |
|
import torch |
|
from sync_batchnorm import DataParallelWithCallback |
|
|
|
from modules.generator import OcclusionAwareGenerator |
|
from modules.keypoint_detector import KPDetector |
|
from animate import normalize_kp |
|
|
|
|
|
def load_checkpoints(config_path, checkpoint_path, cpu=False): |
|
|
|
with open(config_path) as f: |
|
config = yaml.load(f) |
|
|
|
generator = OcclusionAwareGenerator( |
|
**config["model_params"]["generator_params"], **config["model_params"]["common_params"] |
|
) |
|
if not cpu: |
|
generator.cuda() |
|
|
|
kp_detector = KPDetector(**config["model_params"]["kp_detector_params"], **config["model_params"]["common_params"]) |
|
if not cpu: |
|
kp_detector.cuda() |
|
|
|
if cpu: |
|
checkpoint = torch.load(checkpoint_path, map_location=torch.device("cpu")) |
|
else: |
|
checkpoint = torch.load(checkpoint_path) |
|
|
|
generator.load_state_dict(checkpoint["generator"]) |
|
kp_detector.load_state_dict(checkpoint["kp_detector"]) |
|
|
|
if not cpu: |
|
generator = DataParallelWithCallback(generator) |
|
kp_detector = DataParallelWithCallback(kp_detector) |
|
|
|
generator.eval() |
|
kp_detector.eval() |
|
|
|
return generator, kp_detector |
|
|
|
|
|
def make_animation( |
|
source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False |
|
): |
|
with torch.no_grad(): |
|
predictions = [] |
|
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) |
|
if not cpu: |
|
source = source.cuda() |
|
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3) |
|
kp_source = kp_detector(source) |
|
kp_driving_initial = kp_detector(driving[:, :, 0]) |
|
|
|
for frame_idx in tqdm(range(driving.shape[2])): |
|
driving_frame = driving[:, :, frame_idx] |
|
if not cpu: |
|
driving_frame = driving_frame.cuda() |
|
kp_driving = kp_detector(driving_frame) |
|
kp_norm = normalize_kp( |
|
kp_source=kp_source, |
|
kp_driving=kp_driving, |
|
kp_driving_initial=kp_driving_initial, |
|
use_relative_movement=relative, |
|
use_relative_jacobian=relative, |
|
adapt_movement_scale=adapt_movement_scale, |
|
) |
|
out = generator(source, kp_source=kp_source, kp_driving=kp_norm) |
|
|
|
predictions.append(np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0]) |
|
return predictions |
|
|
|
|
|
def inference(video, image): |
|
|
|
cmd = f"ffmpeg -y -ss 00:00:00 -i {video} -to 00:00:08 -c copy video_input.mp4" |
|
subprocess.run(cmd.split()) |
|
video = "video_input.mp4" |
|
|
|
source_image = imageio.imread(image) |
|
reader = imageio.get_reader(video) |
|
fps = reader.get_meta_data()["fps"] |
|
driving_video = [] |
|
try: |
|
for im in reader: |
|
driving_video.append(im) |
|
except RuntimeError: |
|
pass |
|
reader.close() |
|
|
|
source_image = resize(source_image, (256, 256))[..., :3] |
|
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video] |
|
|
|
predictions = make_animation( |
|
source_image, |
|
driving_video, |
|
generator, |
|
kp_detector, |
|
relative=True, |
|
adapt_movement_scale=True, |
|
cpu=True, |
|
) |
|
imageio.mimsave("result.mp4", [img_as_ubyte(frame) for frame in predictions], fps=fps) |
|
imageio.mimsave("driving.mp4", [img_as_ubyte(frame) for frame in driving_video], fps=fps) |
|
cmd = f"ffmpeg -y -i result.mp4 -i {video} -c copy -map 0:0 -map 1:1 -shortest out.mp4" |
|
subprocess.run(cmd.split()) |
|
cmd = "ffmpeg -y -i driving.mp4 -i out.mp4 -filter_complex hstack=inputs=2 final.mp4" |
|
subprocess.run(cmd.split()) |
|
return "final.mp4" |
|
|
|
|
|
title = "First Order Motion Model" |
|
description = "Gradio demo for First Order Motion Model. Read more at the links below. Upload a video file (cropped to face), a facial image and have fun :D. Please note that your video will be trimmed to first 8 seconds." |
|
article = "<p style='text-align: center'><a href='https://papers.nips.cc/paper/2019/file/31c0b36aef265d9221af80872ceb62f9-Paper.pdf' target='_blank'>First Order Motion Model for Image Animation</a> | <a href='https://github.com/AliaksandrSiarohin/first-order-model' target='_blank'>Github Repo</a></p>" |
|
examples = [["bella_porch.mp4", "julien.png"]] |
|
generator, kp_detector = load_checkpoints( |
|
config_path="config/vox-256.yaml", |
|
checkpoint_path="weights/vox-adv-cpk.pth.tar", |
|
cpu=True, |
|
) |
|
|
|
iface = gr.Interface( |
|
inference, |
|
[ |
|
gr.inputs.Video(type="mp4"), |
|
gr.inputs.Image(type="filepath"), |
|
], |
|
outputs=gr.outputs.Video(label="Output Video"), |
|
examples=examples, |
|
enable_queue=True, |
|
title=title, |
|
article=article, |
|
description=description, |
|
) |
|
iface.launch(debug=True) |
|
|