|
from tqdm import trange |
|
import torch |
|
|
|
from torch.utils.data import DataLoader |
|
|
|
from logger import Logger |
|
from modules.model import GeneratorFullModel, DiscriminatorFullModel |
|
|
|
from torch.optim.lr_scheduler import MultiStepLR |
|
|
|
from sync_batchnorm import DataParallelWithCallback |
|
|
|
from frames_dataset import DatasetRepeater |
|
|
|
|
|
def train(config, generator, discriminator, kp_detector, checkpoint, log_dir, dataset, device_ids): |
|
train_params = config['train_params'] |
|
|
|
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params['lr_generator'], betas=(0.5, 0.999)) |
|
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params['lr_discriminator'], betas=(0.5, 0.999)) |
|
optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params['lr_kp_detector'], betas=(0.5, 0.999)) |
|
|
|
if checkpoint is not None: |
|
start_epoch = Logger.load_cpk(checkpoint, generator, discriminator, kp_detector, |
|
optimizer_generator, optimizer_discriminator, |
|
None if train_params['lr_kp_detector'] == 0 else optimizer_kp_detector) |
|
else: |
|
start_epoch = 0 |
|
|
|
scheduler_generator = MultiStepLR(optimizer_generator, train_params['epoch_milestones'], gamma=0.1, |
|
last_epoch=start_epoch - 1) |
|
scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params['epoch_milestones'], gamma=0.1, |
|
last_epoch=start_epoch - 1) |
|
scheduler_kp_detector = MultiStepLR(optimizer_kp_detector, train_params['epoch_milestones'], gamma=0.1, |
|
last_epoch=-1 + start_epoch * (train_params['lr_kp_detector'] != 0)) |
|
|
|
if 'num_repeats' in train_params or train_params['num_repeats'] != 1: |
|
dataset = DatasetRepeater(dataset, train_params['num_repeats']) |
|
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True, num_workers=6, drop_last=True) |
|
|
|
generator_full = GeneratorFullModel(kp_detector, generator, discriminator, train_params) |
|
discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params) |
|
|
|
if torch.cuda.is_available(): |
|
generator_full = DataParallelWithCallback(generator_full, device_ids=device_ids) |
|
discriminator_full = DataParallelWithCallback(discriminator_full, device_ids=device_ids) |
|
|
|
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'], checkpoint_freq=train_params['checkpoint_freq']) as logger: |
|
for epoch in trange(start_epoch, train_params['num_epochs']): |
|
for x in dataloader: |
|
losses_generator, generated = generator_full(x) |
|
|
|
loss_values = [val.mean() for val in losses_generator.values()] |
|
loss = sum(loss_values) |
|
|
|
loss.backward() |
|
optimizer_generator.step() |
|
optimizer_generator.zero_grad() |
|
optimizer_kp_detector.step() |
|
optimizer_kp_detector.zero_grad() |
|
|
|
if train_params['loss_weights']['generator_gan'] != 0: |
|
optimizer_discriminator.zero_grad() |
|
losses_discriminator = discriminator_full(x, generated) |
|
loss_values = [val.mean() for val in losses_discriminator.values()] |
|
loss = sum(loss_values) |
|
|
|
loss.backward() |
|
optimizer_discriminator.step() |
|
optimizer_discriminator.zero_grad() |
|
else: |
|
losses_discriminator = {} |
|
|
|
losses_generator.update(losses_discriminator) |
|
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()} |
|
logger.log_iter(losses=losses) |
|
|
|
scheduler_generator.step() |
|
scheduler_discriminator.step() |
|
scheduler_kp_detector.step() |
|
|
|
logger.log_epoch(epoch, {'generator': generator, |
|
'discriminator': discriminator, |
|
'kp_detector': kp_detector, |
|
'optimizer_generator': optimizer_generator, |
|
'optimizer_discriminator': optimizer_discriminator, |
|
'optimizer_kp_detector': optimizer_kp_detector}, inp=x, out=generated) |
|
|