8testi1 / app.py
ismot's picture
Duplicate from razfar/anything-counter
938fb55
import gradio as gr
import argparse
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size,
non_max_suppression,
apply_classifier,
scale_coords,
xyxy2xywh,
set_logging,
increment_path,
)
from utils.plots import plot_one_box
from utils.torch_utils import (
select_device,
load_classifier,
TracedModel,
)
from PIL import Image
from huggingface_hub import hf_hub_download
def load_model(model_name):
model_path = hf_hub_download(
repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt"
)
return model_path
loaded_model = load_model("yolov7")
def detect(img):
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", nargs="+", type=str, default=loaded_model, help="model.pt path(s)"
)
parser.add_argument("--source", type=str, default="Inference/", help="source")
parser.add_argument(
"--img-size", type=int, default=640, help="inference size (pixels)"
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="object confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="IOU threshold for NMS"
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--view-img", action="store_true", help="display results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-conf", action="store_true", help="save confidences in --save-txt labels"
)
parser.add_argument(
"--nosave", action="store_true", help="do not save images/videos"
)
parser.add_argument(
"--classes",
nargs="+",
type=int,
help="filter by class: --class 0, or --class 0 2 3",
)
parser.add_argument(
"--agnostic-nms", action="store_true", help="class-agnostic NMS"
)
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument(
"--project", default="runs/detect", help="save results to project/name"
)
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--trace", action="store_true", help="trace model")
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = (
opt.source,
opt.weights,
opt.view_img,
opt.save_txt,
opt.img_size,
opt.trace,
)
save_img = True # save inference images
# Directories
save_dir = Path(
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name="resnet101", n=2) # initialize
modelc.load_state_dict(
torch.load("weights/resnet101.pt", map_location=device)["model"]
).to(device).eval()
# Set Dataloader
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, "module") else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(
pred,
opt.conf_thres,
opt.iou_thres,
classes=opt.classes,
agnostic=opt.agnostic_nms,
)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)
p = Path(p) # to Path
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)} " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (
(xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
.view(-1)
.tolist()
) # normalized xywh
line = (
(cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
) # label format
with open(txt_path + ".txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or view_img: # Add bbox to image
label = f"{names[int(cls)]} {conf:.2f}"
plot_one_box(
xyxy,
im0,
label=label,
color=colors[int(cls)],
line_thickness=3,
)
print(f"Done. ({time.time() - t0:.3f}s)")
return [Image.fromarray(im0[:, :, ::-1]), s]
css_code = ".border{border-width: 0;}.gr-button-primary{--tw-gradient-stops: rgb(11 143 235 / 70%), rgb(192 53 208 / 80%);color:black;border-color:black;}.gr-button-secondary{color:black;border-color:black;--tw-gradient-stops: white;}.gr-panel{background-color: white;}.gr-text-input{border-width: 0;padding: 0;text-align: center;margin-left: -8px;font-size: 28px;color: black;margin-top: -12px;}.font-semibold,.shadow-sm,.h-5,.text-xl,.text-xs{display:none;}.gr-box{box-shadow:none;border-radius:0;}.object-contain{background-color: white;}.gr-prose h1{font-family: Helvetica; font-weight: 400 !important;}"
gr.Interface(
fn=detect,
title="Anything Counter",
inputs=gr.Image(type="pil"),
outputs=[gr.Image(label="detection", type="pil"), gr.Textbox(label="")],
css=css_code,
allow_flagging="never",
examples=[
["Examples/apples.jpeg"],
["Examples/birds.jpeg"],
["Examples/bottles.jpeg"],
],
).launch(debug=True)