File size: 7,448 Bytes
2f99bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from imutils import face_utils
import numpy as np
import random
import albumentations as alb
from .DeepFakeMask import dfl_full, extended, components, facehull
import cv2

def IoUfrom2bboxes(boxA, boxB):
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
    iou = interArea / float(boxAArea + boxBArea - interArea)
    return iou

def reorder_landmark(landmark):
    landmark_add = np.zeros((13, 2))
    for idx, idx_l in enumerate([77, 75, 76, 68, 69, 70, 71, 80, 72, 73, 79, 74, 78]):
        landmark_add[idx] = landmark[idx_l]
    landmark[68:] = landmark_add
    return landmark

def get_dlib_landmarks(inp, dlib_face_detector, dlib_face_predictor):
    faces = dlib_face_detector(inp, 1)
    if len(faces)==0:
        raise Exception("No faces detected")
    landmarks=[]
    size_list=[]
    for face_idx in range(len(faces)):
        landmark = dlib_face_predictor(inp, faces[face_idx])
        landmark = face_utils.shape_to_np(landmark)
        x0,y0=landmark[:,0].min(),landmark[:,1].min()
        x1,y1=landmark[:,0].max(),landmark[:,1].max()
        face_s=(x1-x0)*(y1-y0)
        size_list.append(face_s)
        landmarks.append(landmark)
    landmarks=np.concatenate(landmarks).reshape((len(size_list),)+landmark.shape)
    landmarks=landmarks[np.argsort(np.array(size_list))[::-1]]
    return landmarks

def get_retina_bbox(inp,face_detector):
    faces = face_detector.predict_jsons(inp)
    landmarks=[]
    size_list=[]
    for face_idx in range(len(faces)):
        
        x0,y0,x1,y1=faces[face_idx]['bbox']
        landmark=np.array([[x0,y0],[x1,y1]]+faces[face_idx]['landmarks'])
        face_s=(x1-x0)*(y1-y0)
        size_list.append(face_s)
        landmarks.append(landmark)
    landmarks=np.concatenate(landmarks).reshape((len(size_list),)+landmark.shape)
    landmarks=landmarks[np.argsort(np.array(size_list))[::-1]]

    return landmarks

def random_get_hull(landmark,img, face_region):
    face_region = int(face_region)
    if face_region == 1:
        mask = dfl_full(landmarks=landmark.astype('int32'),face=img, channels=3).mask
    elif face_region == 2:
        mask = extended(landmarks=landmark.astype('int32'),face=img, channels=3).mask
    elif face_region == 3:
        mask = components(landmarks=landmark.astype('int32'),face=img, channels=3).mask
    else:
        mask = facehull(landmarks=landmark.astype('int32'),face=img, channels=3).mask
    return mask/255

class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform):
	def apply(self,img,**params):
		return self.randomdownscale(img)

	def randomdownscale(self,img):
		keep_ratio=True
		keep_input_shape=True
		H,W,C=img.shape
		ratio_list=[2,4]
		r=ratio_list[np.random.randint(len(ratio_list))]
		img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
		if keep_input_shape:
			img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)

		return img_ds

def get_source_transforms():
    return alb.Compose([
        alb.Compose([
            alb.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
            alb.HueSaturationValue(
                hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3), val_shift_limit=(-0.3, 0.3), p=1),
            alb.RandomBrightnessContrast(
                brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=1),
        ], p=1),

        alb.OneOf([
            RandomDownScale(p=1),
            alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
        ], p=1),

    ], p=1.)

def randaffine(img, mask):
    f = alb.Affine(
        translate_percent={'x': (-0.03, 0.03), 'y': (-0.015, 0.015)},
        scale=[0.95, 1/0.95],
        fit_output=False,
        p=1)

    g = alb.ElasticTransform(
        alpha=50,
        sigma=7,
        alpha_affine=0,
        p=1,
    )

    transformed = f(image=img, mask=mask)
    img = transformed['image']

    mask = transformed['mask']
    transformed = g(image=img, mask=mask)
    mask = transformed['mask']
    return img, mask

def get_blend_mask(mask):
	H,W=mask.shape
	size_h=np.random.randint(192,257)
	size_w=np.random.randint(192,257)
	mask=cv2.resize(mask,(size_w,size_h))
	kernel_1=random.randrange(5,26,2)
	kernel_1=(kernel_1,kernel_1)
	kernel_2=random.randrange(5,26,2)
	kernel_2=(kernel_2,kernel_2)
	
	mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
	mask_blured = mask_blured/(mask_blured.max())
	mask_blured[mask_blured<1]=0
	
	mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5,46))
	mask_blured = mask_blured/(mask_blured.max())
	mask_blured = cv2.resize(mask_blured,(W,H))
	return mask_blured.reshape((mask_blured.shape+(1,)))


def dynamic_blend(source,target,mask,blending_type, mixup_ratio=[0.25,0.5,0.75,1,1,1]):
    """Performs dynamic blending of source and target, using the mask as the blending region

    Args:
        source: source image
        target: target image
        mask: mask image

    Returns:
        img_blended: blended image
        mask_blurred: augmented mask used for blending
    """

    mask_blured = get_blend_mask(mask)
    mask_blured_copy = mask_blured.copy()
    
    if blending_type == "Poisson":
        # Poisson blending
        b_mask = (mask_blured_copy * 255).astype(np.uint8)
        l, t, w, h = cv2.boundingRect(b_mask)
        center = (int(l + w / 2), int(t + h / 2))
        img_blended = cv2.seamlessClone(source, target, b_mask, center, cv2.NORMAL_CLONE)
    else:
        # Mix up blending
        blend_list=mixup_ratio
        blend_ratio = blend_list[np.random.randint(len(blend_list))]

        mask_blured_copy = mask_blured.copy()
        mask_blured_copy*=blend_ratio

        img_blended=(mask_blured_copy * source + (1 - mask_blured_copy) * target)

    return img_blended,mask_blured

def get_transforms():
    return alb.Compose([

        alb.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
        alb.HueSaturationValue(
            hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3), val_shift_limit=(-0.3, 0.3), p=0.3),
        alb.RandomBrightnessContrast(
            brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
        alb.ImageCompression(quality_lower=40, quality_upper=100, p=0.5),

    ],
        additional_targets={f'image1': 'image'},
        p=1.)


def self_blending(img, landmark, blending_type, face_region):
    if np.random.rand() < 0.25:
        landmark = landmark[:68]
    mask = random_get_hull(landmark, img, face_region)
    if mask.shape[-1] == 3:
        mask = mask[:, :, 0]

    mask_copy = mask

    source_transforms = get_source_transforms()
    source = img.copy()
    source = source_transforms(image=source.astype(np.uint8))['image']

    source_before_affine_transforms, mask_before_affine_transforms = source, mask
    source, mask = randaffine(source, mask)
    source_after_affine_transforms, mask_after_affine_transforms = source, mask

    img_blended, mask = dynamic_blend(source, img, mask, blending_type)
    img_blended = img_blended.astype(np.uint8)
    img = img.astype(np.uint8)

    return img, img_blended, mask, mask_copy, source_before_affine_transforms, mask_before_affine_transforms, source_after_affine_transforms, mask_after_affine_transforms