|
import numpy |
|
import torch |
|
import gradio as gr |
|
from einops import rearrange |
|
from torchvision import transforms |
|
|
|
from model import CANNet |
|
model = CANNet() |
|
checkpoint = torch.load('part_B_pre.pth.tar',map_location=torch.device('cpu')) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
model.eval() |
|
|
|
|
|
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) |
|
|
|
|
|
def crowd(img): |
|
|
|
img = transform(img) |
|
|
|
|
|
img = rearrange(img, "c h w -> 1 c h w") |
|
|
|
|
|
h = img.shape[2] |
|
w = img.shape[3] |
|
h_d = int(h/2) |
|
w_d = int(w/2) |
|
img_1 = img[:,:,:h_d,:w_d] |
|
img_2 = img[:,:,:h_d,w_d:] |
|
img_3 = img[:,:,h_d:,:w_d] |
|
img_4 = img[:,:,h_d:,w_d:] |
|
|
|
|
|
with torch.no_grad(): |
|
density_1 = model(img_1).numpy().sum() |
|
density_2 = model(img_2).numpy().sum() |
|
density_3 = model(img_3).numpy().sum() |
|
density_4 = model(img_4).numpy().sum() |
|
|
|
|
|
pred = density_1 + density_2 + density_3 + density_4 |
|
pred = int(pred.round()) |
|
return pred |
|
|
|
outputs = gr.outputs.Textbox(type="auto", label="Estimated crowd density:") |
|
inputs = gr.inputs.Image(type="numpy", label="Input the image here:") |
|
|
|
gr.Interface(fn=crowd, inputs=inputs, outputs=outputs, allow_flagging="never", examples=["IMG_5.jpg", "IMG_10.jpg"], title = "CANNet Crowd Counting Model", description = "CANNet crowd counting model by Lui, Salzmann, and Fua in their paper Context-Aware Crowd Counting publish in The IEEE Conference on Computer Vision and Pattern Recognition (CPVR) on June 2019. The GitHub repository for the PyTorch implementation can be found in https://github.com/weizheliu/Context-Aware-Crowd-Counting. Please input the image and click submit to use the model and know the estimated crowd count in the image.").launch(inbrowser=True) |