Duplicate from khaclinh/self-driving-anonymization
Browse filesCo-authored-by: Linh Trinh <[email protected]>
- .gitattributes +31 -0
- README.md +14 -0
- app.py +133 -0
- data/fisheye.jpg +0 -0
- data/strasbourg.jpg +0 -0
- data/stuttgart.jpg +0 -0
- data/zurich.jpg +0 -0
- model_weights/.keep +1 -0
- model_weights/best_ckpt.pth +3 -0
- pp4av_exp.py +48 -0
- requirements.txt +9 -0
.gitattributes
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Self Driving Anonymization
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.4.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: cc-by-nc-4.0
|
11 |
+
duplicated_from: khaclinh/self-driving-anonymization
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: khaclinh
|
2 |
+
import os
|
3 |
+
|
4 |
+
os.system('pip install yolox')
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import importlib
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
|
14 |
+
from yolox.utils import postprocess
|
15 |
+
from yolox.data.data_augment import ValTransform
|
16 |
+
|
17 |
+
ckpt_file = 'model_weights/best_ckpt.pth'
|
18 |
+
|
19 |
+
# get YOLOX experiment
|
20 |
+
current_exp = importlib.import_module('pp4av_exp')
|
21 |
+
exp = current_exp.Exp()
|
22 |
+
|
23 |
+
# set inference parameters
|
24 |
+
test_size = (800, 800)
|
25 |
+
num_classes = 2
|
26 |
+
nmsthre = 0.3
|
27 |
+
|
28 |
+
GDPR_CLASSES = (
|
29 |
+
"Face",
|
30 |
+
"Plate"
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
# get YOLOX model
|
35 |
+
model = exp.get_model()
|
36 |
+
#model.cuda()
|
37 |
+
model.eval()
|
38 |
+
|
39 |
+
# get custom trained checkpoint
|
40 |
+
ckpt = torch.load(ckpt_file, map_location="cpu")
|
41 |
+
model.load_state_dict(ckpt["model"])
|
42 |
+
|
43 |
+
|
44 |
+
def yolox_inference(img, model, prob_threshold, test_size):
|
45 |
+
bboxes = []
|
46 |
+
bbclasses = []
|
47 |
+
scores = []
|
48 |
+
|
49 |
+
preproc = ValTransform(legacy = False)
|
50 |
+
|
51 |
+
tensor_img, _ = preproc(img, None, test_size)
|
52 |
+
tensor_img = torch.from_numpy(tensor_img).unsqueeze(0)
|
53 |
+
tensor_img = tensor_img.float()
|
54 |
+
#tensor_img = tensor_img.cuda()
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
outputs = model(tensor_img)
|
58 |
+
outputs = postprocess(
|
59 |
+
outputs, num_classes, prob_threshold,
|
60 |
+
nmsthre, class_agnostic=True
|
61 |
+
)
|
62 |
+
|
63 |
+
if outputs[0] is None:
|
64 |
+
return [], [], []
|
65 |
+
|
66 |
+
outputs = outputs[0].cpu()
|
67 |
+
bboxes = outputs[:, 0:4]
|
68 |
+
|
69 |
+
bboxes /= min(test_size[0] / img.shape[0], test_size[1] / img.shape[1])
|
70 |
+
bbclasses = outputs[:, 6]
|
71 |
+
scores = outputs[:, 4] * outputs[:, 5]
|
72 |
+
|
73 |
+
return bboxes, bbclasses, scores
|
74 |
+
|
75 |
+
|
76 |
+
def draw_yolox_predictions(img, bboxes, scores, bbclasses, prob_threshold, classes_dict):
|
77 |
+
for i in range(len(bboxes)):
|
78 |
+
box = bboxes[i]
|
79 |
+
cls_id = int(bbclasses[i])
|
80 |
+
score = scores[i]
|
81 |
+
if score < prob_threshold:
|
82 |
+
continue
|
83 |
+
x0 = int(box[0])
|
84 |
+
y0 = int(box[1])
|
85 |
+
x1 = int(box[2])
|
86 |
+
y1 = int(box[3])
|
87 |
+
if cls_id == 0:
|
88 |
+
|
89 |
+
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
90 |
+
cv2.putText(img, '{}:{:.1f}%'.format(classes_dict[cls_id], score * 100), (x0, y0 - 3), cv2.FONT_HERSHEY_PLAIN, 0.8, (0,255,0), thickness = 1)
|
91 |
+
else:
|
92 |
+
cv2.rectangle(img, (x0, y0), (x1, y1), (255, 0, 0), 2)
|
93 |
+
cv2.putText(img, '{}:{:.1f}%'.format(classes_dict[cls_id], score * 100), (x0, y0 - 3), cv2.FONT_HERSHEY_PLAIN, 0.8, (255,0,0), thickness = 1)
|
94 |
+
|
95 |
+
|
96 |
+
return img
|
97 |
+
|
98 |
+
|
99 |
+
def pp4av_detect(img, prob_threshold=0.1):
|
100 |
+
# Convert PIL image to CV2
|
101 |
+
open_cv_image = np.array(img)
|
102 |
+
# Convert RGB to BGR
|
103 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
104 |
+
|
105 |
+
bboxes, bbclasses, scores = yolox_inference(open_cv_image, model, prob_threshold, test_size)
|
106 |
+
|
107 |
+
out = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)
|
108 |
+
# Draw predictions
|
109 |
+
out_image = draw_yolox_predictions(out, bboxes, scores, bbclasses, prob_threshold, GDPR_CLASSES)
|
110 |
+
|
111 |
+
return Image.fromarray(out_image)
|
112 |
+
|
113 |
+
|
114 |
+
img_input = gr.inputs.Image(type='pil', label="Original Image")
|
115 |
+
img_output = gr.outputs.Image(type="pil", label="Output Image")
|
116 |
+
|
117 |
+
prob_threshold_slider = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.1, label="Confidence Threshold")
|
118 |
+
|
119 |
+
title = "PP4AV: Deep Learning model for Data Anonymization in Autonomous Driving"
|
120 |
+
description = "Detecting faces and license plates in image data from self-driving cars. Take a picture, upload an image, or click an example image to use."
|
121 |
+
article = ""
|
122 |
+
|
123 |
+
examples = [['data/fisheye.jpg'], ['data/zurich.jpg'], ['data/stuttgart.jpg'], ['data/strasbourg.jpg']]
|
124 |
+
gr.Interface(
|
125 |
+
fn = pp4av_detect,
|
126 |
+
inputs = [img_input, prob_threshold_slider],
|
127 |
+
outputs = img_output,
|
128 |
+
title = title,
|
129 |
+
description = description,
|
130 |
+
article = article,
|
131 |
+
examples = examples,
|
132 |
+
theme = "huggingface"
|
133 |
+
).launch(enable_queue=True)
|
data/fisheye.jpg
ADDED
![]() |
data/strasbourg.jpg
ADDED
![]() |
data/stuttgart.jpg
ADDED
![]() |
data/zurich.jpg
ADDED
![]() |
model_weights/.keep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
model_weights/best_ckpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f2abeffba9454f8c88a1cb42dd1358ce054f5a4656bed4c9f1542911f5e5f99
|
3 |
+
size 433859563
|
pp4av_exp.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Copyright (c) Megvii, Inc. and its affiliates.
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from yolox.exp import Exp as MyExp
|
8 |
+
|
9 |
+
class Exp(MyExp):
|
10 |
+
def __init__(self):
|
11 |
+
super(Exp, self).__init__()
|
12 |
+
self.depth = 1.0 # indicate size yolo model
|
13 |
+
self.width = 1.0 #
|
14 |
+
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
|
15 |
+
|
16 |
+
self.data_dir = ''
|
17 |
+
self.train_ann = ''
|
18 |
+
self.val_ann = ''
|
19 |
+
self.test_ann = ''
|
20 |
+
|
21 |
+
self.num_classes = 2
|
22 |
+
self.data_num_workers = 32 # number of cpu for splitting batch
|
23 |
+
|
24 |
+
self.input_size = (800, 800)
|
25 |
+
self.print_interval = 100
|
26 |
+
self.eval_interval = 1
|
27 |
+
self.test_size = (800, 800)
|
28 |
+
self.enable_mixup = True
|
29 |
+
self.mosaic_scale = (0.5, 1.5)
|
30 |
+
self.max_epoch = 300
|
31 |
+
self.hsv_prob = 1.0
|
32 |
+
|
33 |
+
self.degrees = 20.0
|
34 |
+
self.translate = 0.2
|
35 |
+
self.shear = 2.0
|
36 |
+
# Turn off mosaic
|
37 |
+
self.mosaic_prob = 1.0
|
38 |
+
# Turn off Mixup
|
39 |
+
self.mixup_prob = 1.0
|
40 |
+
# Change SGD by ADAM
|
41 |
+
|
42 |
+
|
43 |
+
self.basic_lr_per_img = 0.01 / 28.0
|
44 |
+
self.no_aug_epochs = 15
|
45 |
+
self.min_lr_ratio = 0.05
|
46 |
+
self.ema = True
|
47 |
+
|
48 |
+
self.nmsthre = 0.3
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
numpy
|
5 |
+
opencv-python
|
6 |
+
seaborn
|
7 |
+
tabulate
|
8 |
+
loguru
|
9 |
+
thop
|