Spaces:
Sleeping
Sleeping
File size: 1,157 Bytes
9322a5c 8987036 267ce0e 8533608 c3c7832 267ce0e 149b30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch
import numpy as np
def main():
st.title("yelp2024fall Test")
st.write("Enter a sentence for analysis:")
user_input = st.text_input("")
if user_input:
# Approach: AutoModel
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2025L1",
num_labels=5)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
inputs = tokenizer(user_input,
padding=True,
truncation=True,
return_tensors='pt')
outputs = model2(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = predictions.cpu().detach().numpy()
# Get the index of the largest output value
max_index = np.argmax(predictions)
st.write(f"result (AutoModel) - Label: {max_index}")
if __name__ == "__main__":
main() |